




已阅读5页,还剩108页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章行列式,把个不同的元素排成一列,叫做这个元素的全排列(或排列),个不同的元素的所有排列的种数用表示,且,全排列,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列,在一个排列中,若数,则称这两个数组成一个逆序,一个排列中所有逆序的总数称为此排列的逆序数,逆序数,分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,每个元素的逆序数之总和即为所求排列的逆序数,方法2,方法1,分别计算出排在前面比它大的数码之和,即分别算出这个元素的逆序数,这个元素的逆序数之总和即为所求排列的逆序数,计算排列逆序数的方法,定义,在排列中,将任意两个元素对调,其余元素不动,称为一次对换将相邻两个元素对调,叫做相邻对换,定理,一个排列中的任意两个元素对换,排列改变奇偶性,推论,奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数,对换,n阶行列式的定义,n阶行列式的性质,)余子式与代数余子式,行列式按行(列)展开,)关于代数余子式的重要性质,克拉默法则,克拉默法则的理论价值,定理,定理,定理,定理,第二章矩阵及其运算,矩阵,矩阵的定义,方阵列矩阵行矩阵,两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵,同型矩阵和相等矩阵,零矩阵单位矩阵,交换律,结合律,矩阵相加,运算规律,数乘矩阵,矩阵相乘,运算规律,n阶方阵的幂,方阵的运算,方阵的行列式,运算规律,转置矩阵,一些特殊的矩阵,对称矩阵,反对称矩阵,正交矩阵,对角矩阵,上三角矩阵,主对角线以下的元素全为零的方阵称为上三角矩阵,下三角矩阵,主对角线以上的元素全为零的方阵称为下三角矩阵,伴随矩阵,定义,逆矩阵,相关定理及性质,矩阵的分块,主要目的在于简化运算及便于论证,分块矩阵的运算规则与普通矩阵的运算规则相类似,分块矩阵,第三章矩阵的初等变换与线性方程组,初等变换的定义,换法变换,倍法变换,消法变换,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换,反身性,传递性,对称性,矩阵的等价,三种初等变换对应着三种初等矩阵,初等矩阵,由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵,()换法变换:对调两行(列),得初等矩阵,()倍法变换:以数(非零)乘某行(列),得初等矩阵,()消法变换:以数乘某行(列)加到另一行(列)上去,得初等矩阵,经过初等行变换,可把矩阵化为行阶梯形矩阵,其特点是:可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,例如,行阶梯形矩阵,经过初等行变换,行阶梯形矩阵还可以进一步化为行最简形矩阵,其特点是:非零行的第一个非零元为1,且这些非零元所在列的其它元素都为0,例如,行最简形矩阵,对行阶梯形矩阵再进行初等列变换,可得到矩阵的标准形,其特点是:左上角是一个单位矩阵,其余元素都为0,例如,矩阵的标准形,所有与A等价的矩阵组成的一个集合,称为一个等价类,标准形是这个等价类中形状最简单的矩阵,定义,矩阵的秩,定义,定理,行阶梯形矩阵的秩等于非零行的行数,矩阵秩的性质及定理,定理,定理,线性方程组有解判别定理,齐次线性方程组:把系数矩阵化成行最简形矩阵,写出通解,非齐次线性方程组:把增广矩阵化成行阶梯形矩阵,根据有解判别定理判断是否有解,若有解,把增广矩阵进一步化成行最简形矩阵,写出通解,10线性方程组的解法,定理,11初等矩阵与初等变换的关系,定理,推论,第四章向量组的线性相关性,分量全为实数的向量称为实向量,分量全为复数的向量称为复向量,向量的定义,定义,向量的相等,零向量,分量全为0的向量称为零向量,负向量,向量加法,向量的线性运算,数乘向量,向量加法和数乘向量运算称为向量的线性运算,满足下列八条运算规则:,除了上述八条运算规则,显然还有以下性质:,若干个同维数的列(行)向量所组成的集合叫做向量组,定义,线性组合,定义,线性表示,定理,定义,定义,线性相关,定理,定理,定义,向量组的秩,等价的向量组的秩相等,定理,矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩,定理,设向量组B能由向量组A线性表示,则向量组B的秩不大于向量组A的秩,推论,推论,推论(最大无关组的等价定义),设向量组是向量组的部分组,若向量组线性无关,且向量组能由向量组线性表示,则向量组是向量组的一个最大无关组,向量空间,定义,子空间,定义,基与维数,向量方程,齐次线性方程组,解向量,解向量的性质,性质,性质,定义,定理,定义,向量方程,非齐次线性方程组,解向量的性质,性质,性质,解向量,向量方程的解就是方程组的解向量,()求齐次线性方程组的基础解系,线性方程组的解法,第一步:对系数矩阵进行初等行变换,使其变成行最简形矩阵,第三步:将其余个分量依次组成阶单位矩阵,于是得齐次线性方程组的一个基础解系,()求非齐次线性方程组的特解,将上述矩阵中最后一列的前个分量依次作为特解的第个分量,其余个分量全部取零,于是得,即为所求非齐次线性方程组的一个特解,第五章相似矩阵,定义,向量内积的定义及运算规律,定义,向量的长度具有下列性质:,向量的长度,定义,向量的夹角,所谓正交向量组,是指一组两两正交的非零向量向量空间的基若是正交向量组,就称为正交基,定理,定义,正交向量组的性质,施密特正交化方法,第一步正交化,第二步单位化,定义,正交矩阵与正交变换,方阵为正交矩阵的充分必要条件是的行(列)向量都是单位向量,且两两正交,定义若为正交矩阵,则线性变换称为正交变换,正交变换的特性在于保持线段的长度不变,定义,方阵的特征值和特征向量,有关特征值的一些结论,定理,定理属于同一个特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量,有关特征向量的一些结论,定义,矩阵之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 狂犬病防治知识课件
- 恩施物业整改工程方案(3篇)
- 磴口工程空气治理方案(3篇)
- 江苏省宿迁市2025年中考化学真题试卷附真题答案
- 安全教育大培训大计划课件
- 昆山语文面试题库及答案
- 科研单位面试题库及答案
- 长尾词视角下2025年页岩气开采技术环境影响深度解析
- 安全教育培训讲解课件
- 2025年氢能重卡商业化运营经济效益评估报告
- 四肢骨折护理要点及规范
- 消防经济学试题及答案
- 《麦克风培训资料》课件
- 口腔综合治疗台水路清洗消毒技术规范
- 心理课堂-情绪ABC理论教案
- 村消防安全管理工作制度
- 虚拟电厂控制系统用户手册
- 资金使用合作协议书范本
- 《江苏省工程勘察设计收费导则》2024
- 2025年全国禁毒知识竞赛题库(共100题附答案)
- 储能站施工组织设计施工技术方案(技术标)
评论
0/150
提交评论