




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大值与最小值,一、知识回顾:,一般地,设函数y=f(x)在x=x0及其附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们就说f(x0)是函数的一个极大值,记作y极大值=f(x0),x0是极大值点。如果f(x0)的值比x0附近所有各点的函数值都小,我们就说f(x0)是函数的一个极小值。记作y极小值=f(x0),x0是极小值点。极大值与极小值统称为极值.,1、函数极值的定义,1、在定义中,取得极值的点称为极值点,极值点是自变量(x)的值,极值指的是函数值(y)。,注意,2、极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,3、函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个。,4、极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而,(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,求出极大值和极小值.,2、求函数f(x)的极值的步骤:,(1)求导数f(x);,(2)求方程f(x)=0的根;,(x为极值点.),注意:,如果函数f(x)在x0处取得极值,就意味着,二、新课讲授,1、最值的概念(最大值与最小值),如果在函数定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数f(x)在定义域上的最大值;,最值是相对函数定义域整体而言的.,如果在函数定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数f(x)在定义域上的最小值.,1.在定义域内,最值唯一;极值不唯一;,注意:,2.最大值一定比最小值大.,2、如何求函数的最值?,(1)利用函数的单调性;,(2)利用函数的图象;,(3)利用函数的导数;,如:求y=2x+1在区间1,3上的最值.,如:求y=(x2)2+3在区间1,3上的最值.,(2)将y=f(x)的各极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值,(1)求f(x)在区间a,b内极值;(极大值或极小值),3、利用导数求函数f(x)在区间a,b上最值的步骤:,注意:若函数f(x)在区间a,b内只有一个极大值(或极小值),则该极大值(或极小值)即为函数f(x)在区间a,b内的最大值(或最小值),例1、求函数f(x)=x2-4x+6在区间1,5内的最大值和最小值,解:f(x)=2x-4,令f(x)=0,即2x4=0,,得x=2,-,+,3,11,2,故函数f(x)在区间1,5内的最大值为11,最小值为2,三、数学应用,函数,在1,1上的最小值为()A.0B.2C.1D.13/12,A,练习,例2求函数在区间-2,2上的最大值与最小值,解:先求导数,得令y0即解得导数y的正负以及,如下表从上表知,当时,函数有最大值13,当时,函数有最小值4,解:,练习,例3已知,x(0,+)是否存在实数a,b,使同时满足下列两个条件:(1)在(0,1)上是减函数,在1,+)上是增函数;(2)的最小值是1,若存在,求出a,b,若不存在,说明理由.,四、课堂练习,课本P33练习No.1、2、3.,五、课堂小结,1、最值的概念(最大值与最小值),如果在函数定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数f(x)在定义域上的最大值;,最值是相对函数定义域整体而言的.,如果在函数定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数f(x)在定义域上的最小值.,1.在定义域内,最值唯一;极值不唯一;,注意:,2.最大值一定比最小值大.,2、求函数最值的常用方法:,(1)利用函数的单调性;,(2)利用函数的图象;,(3)利用函数的导数,如:求y=2x+1在区间1,3上的最值.,如:求y=(x2)2+3在区间1,3上的最值.,3、用导数求函数f(x)的最值的步骤:,(2)将y=f(x)的各极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值,(1)求f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室护理指南:手术隔离技术
- 胜任才是硬道理培训教材
- 中班健康:身体上的宝贝
- 糖尿病合并高血压个案护理
- 转移性骨肿瘤的护理及管理
- 2025年品质培训资料
- 住宅小区停车库租赁合同
- 办公家具定制化设计与售后服务承诺书
- 城市绿化带场地无偿使用与生态维护协议
- 电力设备与厂房使用权转让合同
- 小学语文扩句、缩句专题
- 农村公路安全生命防护工程施工方案
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 抗滑桩专项的施工组织方案[专家评审]
- 常用弹簧钢号对照表
- 应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版
- 小学二年级下册劳动教案
- 食品安全及卫生保证措施
- 60m3卧式液化石油气储罐设计
- 树脂的污染及处理
- 食品企业虫害控制培训课件.pptx
评论
0/150
提交评论