正弦定理应用举例ppt课件_第1页
正弦定理应用举例ppt课件_第2页
正弦定理应用举例ppt课件_第3页
正弦定理应用举例ppt课件_第4页
正弦定理应用举例ppt课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,仰角:目标视线在水平线上方的叫仰角;俯角:目标视线在水平线下方的叫俯角;方位角:北方向线顺时针方向到目标方向线的夹角。,N,方位角60度,水平线,目标方向线,视线,视线,仰角,俯角,O,A,B,解斜三角形中的有关名词、术语:,.,练习,从A处望B处的仰角为,从B处望A处的俯角为,则的关系为().,.,A,C,B,51o,55m,75o,测量距离,例1.设A、B两点在河的两岸,要测量两点之间的距离。,测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55cm,BAC51o,ACB75o,求A、B两点间的距离(精确到0.1m),分析:已知两角一边,可以用正弦定理解三角形,解:根据正弦定理,得,答:A,B两点间的距离为65.7米。,.,A,B,C,D,.,A,B,a,解:如图,测量者可以在河岸边选定两点C、D,设CD=a,BCA=,ACD=,CDB=,ADB=,分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。,解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=,ACD=,CDB=,BDA=.在ADC和BDC中,应用正弦定理得,计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离,注:阅读教材P12,了解基线的概念,练习1.一艘船以32.2nmile/hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5nmile以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?,.,变式练习:两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东30o,灯塔B在观察站C南偏东60o,则A、B之间的距离为多少?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),(1)什么是最大仰角?,(2)例题中涉及一个怎样的三角形?,在ABC中已知什么,要求什么?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),已知ABC中AB1.95m,AC1.40m,夹角CAB6620,求BC,解:由余弦定理,得,答:顶杆BC约长1.89m。,.,测量高度,测量垂直高度,1、底部可以到达的,测量出角C和BC的长度,解直角三角形即可求出AB的长。,图中给出了怎样的一个几何图形?已知什么,求什么?,想一想,2、底部不能到达的,例3AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高。由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA的长。,解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰角分别是,CD=a,测角仪器的高是h.那么,在ACD中,根据正弦定理可得,例3.AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,分析:根据已知条件,应该设法计算出AB或AC的长,CD=BD-BC177-27.3=150(m),答:山的高度约为150米。,解:在ABC中,BCA=90+,ABC=90-,BAC=-,BAD=.根据正弦定理,,.,练习,1.如图,B,C,D三点在地面一直线上,DC=a,从C,D两点测得A点的仰角分别是,则A点离地面的高AB等于(),.,练习,2.有一幢20m的楼顶测得对面一塔顶的仰角为600,塔基的俯角为450,则塔高为(),例6一艘海轮从A出发,沿北偏东75的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0nmile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1,距离精确到0.01nmile)?,解:在ABC中,ABC1807532137,根据余弦定理,,.,练习,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C的南偏东600,则灯塔A在灯塔B的().,A.北偏东100,B.北偏西100,C.南偏东100,D.南偏西100,.,例8在某市进行城市环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少(精确到0.1cm)?,例题讲解,A,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论