




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.1二次函数图象和性质(1),知识回顾,1、二次函数的一般形式是怎样的?,y=ax+bx+c(a,b,c是常数,a0),学习目标,1.认识形如y=X的二次函数函数。2.利用描点法画出y=x其图像。,一次函数的图象是一条_,反比例函数的图象是_.,(2)通常怎样画一个函数的图象?,直线,双曲线,(3)二次函数的图象是什么形状呢?,列表、描点、连线,探究新知,你会用描点法画二次函数y=x2的图象吗?,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,9,4,1,1,0,4,9,描点,连线,y=x2,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴与抛物线的交点叫做抛物线的顶点.,议一议,(2)图象与x轴有交点吗?如果有,交点坐标是什么?,(4)当x0呢?,(3)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?,观察图象,回答问题:,(1)图象是轴对称图形吗?如果是,它的对称轴是什么?,当x0(在对称轴的右侧)时,y随着x的增大而增大.,抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.,(1)二次函数y=-x2的图象是什么形状?,做一做,你能根据表格中的数据作出猜想吗?,(2)先想一想,然后作出它的图象,(3)它与二次函数y=x2的图象有什么关系?,在学中做在做中学,x,y,0,-4,-3,-2,-1,1,2,3,4,-10,-8,-6,-4,-2,2,-1,描点,连线,y=-x2,当x0(在对称轴的右侧)时,y随着x的增大而减小.,y,抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展;当x=0时,函数y的值最大,最大值是0.,画一画,在同一坐标系中画出函数y=3x2和y=-3x2的图象,1.抛物线y=ax2的顶点是原点,对称轴是y轴.,2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.,二次函数y=ax2的性质,归纳,做一做,(1)抛物线y=2x2的顶点坐标是,对称轴是,在对称轴侧,y随着x的增大而增大;在对称轴侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外).,(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a0时,抛物线的开口向_,顶点是抛物线的最_点,a越大,抛物线的开口越_,下,高,大,二次函数y=ax2的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴对称,顶点坐标是原点(0,0),顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,例:已知抛物线的顶点在原点,对称轴为y轴,且经过点(1,2),则抛物线的表达式为,二次函数的图象都是抛物线,它们的开口或者向上或者向下一般地,二次函数y=ax2+bx+c(a0)的图象叫做抛物线y=ax2+bx+c,实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点顶点是抛物线的最低点或最高点,1、二次函数y=ax2的图象是什么?,2、二次函数y=ax2的图象有何性质?,3、抛物线y=ax2与y=-ax2有何关系?,小结,达标测试,1.已知,二次函数图像经过点A(-2,4).求出这个函数关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度夫妻离婚协议书及子女监护权协议
- 2025版玻璃钢化粪池产业园区建设与运营合同
- 二零二五年工地施工劳务人员绩效考核协议
- 2025版建筑绿化材料采购单价合同
- 二零二五年度篮球教练员技术指导与研发合同
- 二零二五年度知识产权转让对赌协议合同范本
- 二零二五年度房产买卖合同公证所需全部资料
- 二零二五版快递物流企业员工健康管理与保障协议合同
- 二零二五年度商铺租赁合同范本:商铺租赁合同法律咨询与代理解析
- 2025版大渡口吸污车租赁合同含车辆租赁保险与赔偿条款
- 读书分享读书交流会《乡土中国》课件
- 《电子商务概论》(第3版)白东蕊主编 第一章电子商务概述课件
- 眼的生物化学讲义
- 全业务竞争挑战浙江公司社会渠道管理经验汇报
- 护理副高职称答辩5分钟简述范文
- GB/T 42195-2022老年人能力评估规范
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- GB/T 15155-1994滤波器用压电陶瓷材料通用技术条件
- 做一名优秀教师课件
- 企业标准编写模板
- 商场开荒保洁计划书
评论
0/150
提交评论