




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1.2二次函数,二次函数y=ax2的图象和性质,复习,一般地,形如y=ax2+bx+c(a、b、c为常数,a0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项.,二次函数的定义:,下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-l(2)y=2x7(3)y=x-2(4)y=(x+3)-x(5)y=3(x-1)+1,一次函数的图象是一条_,,(2)通常怎样画一个函数的图象?,直线,列表、描点、连线,(3)二次函数的图象是什么形状呢?,二次函数的图像,画函数y=x2的图像,解:(1)列表,(2)描点,(3)连线,根据表中x,y的数值在坐标平面中描点(x,y),再用平滑曲线顺次连接各点,就得到y=x2的图像.,y=x2,二次函数的图像,请画函数y=x2的图像,解:(1)列表,(2)描点,(3)连线,根据表中x,y的数值在坐标平面中描点(x,y),再用平滑曲线顺次连接各点,就得到y=-x2的图像.,y=x2,从图像可以看出,二次函数y=x2和y=x2的图像都是一条曲线,它的形状类似于投篮球或投掷铅球时球在空中所经过的路线.,这样的曲线叫做抛物线.,y=x2的图像叫做抛物线y=x2.,y=x2的图像叫做抛物线y=x2.,实际上,二次函数的图像都是抛物线.,它们的开口向上或者向下.,一般地,二次函数y=ax2+bx+c的图像叫做抛物线y=ax2+bx+c.,二次函数的图像,还可以看出,二次函数y=x2和y=x2的图像都是轴对称图形,y轴是它们的对称轴.,抛物线与对称轴的交点(0,0)叫做抛物线的顶点.,抛物线y=x2的顶点(0,0)是它的最低点.,抛物线y=x2的顶点(0,0)是它的最高点.,y=x2,y=x2,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴、顶点、最低点、最高点,对称轴与抛物线的交点叫做抛物线的顶点.,抛物线y=x2在x轴上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.,在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.,y,抛物线y=-x2在x轴下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展,当x=0时,函数y的值最大,最大值是0.,在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=x2,y=-x2,(0,0),(0,0),y轴,y轴,在x轴上方(除顶点外),在x轴下方(除顶点外),向上,向下,当x=0时,最小值为0,当x=0时,最大值为0,在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.,y=x2、y=-x2,例题与练习,例1.在同一直角坐标系中画出函数y=x2和y=2x2的图像,解:(1)列表,(2)描点,(3)连线,8,2,0.5,0,0.5,2,4.5,8,4.5,函数y=x2,y=2x2的图像与函数y=x2(图中虚线图形)的图像相比,有什么共同点和不同点?,观察,函数的图象与函数y=x2的图象相比,有什么共同点和不同点?,相同点:开口都向上,顶点是原点而且是抛物线的最低点,对称轴是y轴,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大。,不同点:|a|要越大,抛物线的开口越小,例题与练习,在同一直角坐标系中画出函数y=x2和y=2x2的图像,解:(1)列表,(2)描点,(3)连线,函数y=-x2,y=-2x2的图像与函数y=x2(图中虚线图形)的图像相比,有什么共同点和不同点?,观察,y=-x2,y=-2x2,相同点:开口都向下,顶点是原点而且是抛物线的最高点,对称轴是y轴,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小。,不同点:,|a|越大,抛物线开口越小,向上,向下,(0,0),(0,0),y轴或直线x=0,y轴或直线x=0,当x0时或y轴右侧时,y随着x的增大而减小。,抛物线的开口就越小.,|a|越小,抛物线的开口就越大.,归纳:二次函数y=ax2的图象和性质,1、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)。,(2)抛物线在x轴的方(除顶点外),在对称轴的左侧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧城市环境管理与可持续发展
- 教育技术创新对学校发展的推动作用
- 能效监测与智能电网的技术集成应用
- 公交优先战略2025年城市交通拥堵治理的公共交通车辆更新报告
- 广西河池市2024年九上化学期末达标检测试题含解析
- 江苏省连云港灌云县联考2025届化学九年级第一学期期末教学质量检测模拟试题含解析
- 外交学院《书法艺术概论》2023-2024学年第一学期期末试卷
- 湖南省怀化市中学方县2024年数学七年级第一学期期末检测模拟试题含解析
- 新能源领域的科技创新及推广应用分析报告
- 广东机电职业技术学院《岩石力学基础》2023-2024学年第一学期期末试卷
- 遵义市仁怀市选聘城市社区工作者考试真题2024
- DB45∕T 1098-2024 橡胶沥青路面施工技术规范
- 2025年沈阳水务集团招聘笔试冲刺题2025
- 《蚕丝》教学课件
- 东莞东华分班数学试卷
- 江西省金控科技产业集团有限公司招聘笔试题库2025
- 2025年湖北省中考英语试题(附答案)
- 2025至2030中国家用血压计行业发展趋势分析与未来投资战略咨询研究报告
- 吉林省长春市2023−2024学年高二下册期末考试数学科试卷附解析
- 主管护师《相关专业知识》考试真题及答案(2025年)
- 绿化所仓库管理制度
评论
0/150
提交评论