




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复数和复平面,第一章,1.1复数,1.复数的概念,形如或的数称为复数。,a和b为实数,分别称为复数z的实部和虚部,记作,i称为虚单位,即满足,当且仅当虚部b=0时,z=a是实数;当且仅当a=b=0时,z就是实数0;当虚部b0时,z叫做虚数;当实部a=0且虚部b0时,z=ib称为纯虚数.,全体复数的集合称为复数集,用C表示.,实数集R是复数集C的真子集.,如果两个复数的实部和虚部分别相等,称这两个复数相等.,2.复数的向量表示和复平面,复数可用点z(a,b)表示,用直角坐标系表示的复数的平面称为复平面,x轴叫做实轴,y轴叫做虚轴.,实轴上的点表示实数;除了原点外,虚轴上的点表示纯虚数.,当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.,任一实数的共轭复数仍是它本身.,在复平面上,复数还可以用由原点引向点z的向量来表示,这种表示方式建立了复数集C与平面向量所成的集合的一一对应(实数0与零向量对应).向量的长度称为复数z的模,记为|z|或r.,3.复数的运算,加法,减法,复数的运算,有关复数的模和共轭复数的性质,乘法,除法,复数的模和共轭复数的性质,4.复数的三角表示和复数的方根,复平面C的不为零的点,极坐标,是正实轴与从原点O到z的射线的夹角,称为复数z的幅角,记为,满足条件的幅角称为Argz的主值,记为=argz,于是有=Argz=argz+2k,k=0,1,2,.,复数的三角表示,z=r(cos+isin),复数的指数形式,例1.1求arg(-3-i4).,解:Arg(-3-i4)=arg(-3-i4)+2k,k=0,1,2,.,点-3-i4位于第三象限,k=0,1,2,.,例1.2计算,解:,例1.3把复数表示成三角形式和指数形式.,解:,对应的点在第一象限,复数乘法的几何意义,两个复数相乘,积的模等于各复数的模的积,积的幅角等于这两个复数的幅角的和.,两个复数的商的模等于它们模的商,商的幅角等于被除数的幅角与除数的幅角的差.,复数的乘方,r=1时,得棣莫拂(deMoivre)公式,复数的开方,设是已知的复数,n为正整数,则称满足方程的所有的复数为z的n次方根,并且记为.,设,k=0,1,2,n-1,k=0,1,2,n-1,复数的n次方根是n个复数,这些方根的模都等于这个复数的模的n次算术根,它们均匀分布在一个圆周上。,例1.4求1-i的立方根.,解:,1-i的立方根是,例1.5计算n次单位根.,解:,立方单位根是,1.2复平面点集,1.平面点集的几个概念,(1)邻域,集合称为z0的邻域,其中0,称为z0的去心邻域.,(2)内点、开集,若点集E的点z0,有一个z0的邻域,则称z0为E的一个内点;如果点集E中的点全为内点,则称E为开集.,(3)边界点、边界,如果点z0的任意邻域内,既有属于E中的点,又有不属于E中的点,则称z0为E的边界点;集合E所有边界点称为E的边界,记作E.,(4)区域,如果集E内的任何两点可以用包含在E内的一条折线连接起来,则称集E为连通集.连通的开集称为区域.,区域D和它的边界D的并集称为闭区域,记为,(5)有界区域,如果存在正数M,使得对一切zE,有则称E为有界集.若区域D有界,则称为有界区域.,(6)简单曲线、光滑曲线,设x(t)和y(t)是实变量t的两个实函数,它们在闭区间,上连续,则由方程组或由复值函数定义的集合称为复平面上的一条曲线,上述方程称为曲线的参数方程.点A=z()和B=z()分别称为曲线的起点和终点.如果当时,有,称曲线为简单曲线,也称为约当(Jordan)曲线.的简单曲线称为简单闭曲线.,定理1.1一条闭简单曲线将平面分成两个不相交的区域,以曲线为公共边界.,这两个区域,一个是有界的,称为的内部;一个是无界的,称为的外部.,如果曲线在上有和存在、连续,而且不同时为零,则称曲线为光滑曲线.由有限条光滑曲线连接而成的连续曲线,称为分段光滑的曲线.,(7)单连通区域,设D为复平面上的区域,如果在D内的任意简单曲线的内部均属于D,则称D为单连通区域,否则就称为多连通区域.,2.直线和半平面,设L表示C中的直线,如果a是L上的任一点,b是它的方向向量,那么,对于L上的z,有,假定|b|=1,a=0.,于是,当且仅当即.,如果“按照b的方向沿着L前进”,H0是位于L的左边的半平面.,Ha是由半平面H0平移a而得到的,因此,Ha是位于L的左边的半平面.,是位于L的右边的半平面.,1.3扩充复平面及其球面表示,设a是异于的一个复数,规定(1),则;(2),则;(3),则;(4),则;(5)的实部、虚部、幅角都无意义;(6)为了避免和算术定律相矛盾,对不规定其意义.,设想平面上有一个理想点和它对应.这个理想点称为无穷远点.复平面加上,称为扩充复平面C=C.为使的规定合理,规定扩充复平面上只有一个无穷远点.,记R3中的单位球面为,N=(0,0,1)为S上的北极点,把C等同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿克苏地区2025-2026学年八年级下学期语文月考测试试卷
- 社区消防知识培训课件讲稿
- 社区消防知识培训课件图文版
- 甘肃省陇南市礼县2024-2025学年下学期七年级期末数学试卷(含答案)
- 社区治安调解课件模板
- 社区服务课件
- 租车转让合同范本
- 临时劳务合同范本保洁
- 求购林地种树合同范本
- 社区建筑基本知识培训课件
- 光传输系统配置与维护全套完整教学课件
- 罐头食品工艺
- 混凝土外加剂检测原始记录表
- JJG 8-1991水准标尺
- GB/T 15670-1995农药登记毒理学试验方法
- 《矛盾论》、《实践论》导读
- 工程罚款通知单模版
- 2耐压试验报告
- Q∕GDW 12106.3-2021 物联管理平台技术和功能规范 第3部分:应用商店技术要求
- 人教版七年级数学下册计算类专项训练卷【含答案】
- 材料物理之材料的结合方式PPT课件
评论
0/150
提交评论