免费预览已结束,剩余15页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的简单几何性质,知识储备案:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2|)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,当焦点在X轴上时,当焦点在Y轴上时,a,F2,F1,O,B2,B1,A1,A2,x,y,c,b,知识储备案:,找出a、b、c所表示的线段。,B2F2O叫椭圆的特征三角形。,二、椭圆简单的几何性质,问题1:指出A1、A2、B1、B2的坐标?问题2:指出椭圆上点的横坐标的范围?问题3:指出椭圆上点的纵坐标的范围?结论:椭圆中-axa,-byb.椭圆落在x=a,y=b组成的矩形中,1、范围:,2、椭圆的对称性,x,x,对称轴:x轴、y轴对称中心:原点,2、对称性:,从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。,3、椭圆的顶点,令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。,根据前面所学有关知识画出下列图形,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,4、椭圆的离心率e(刻画椭圆扁平程度的量),离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0b,|x|b,|y|a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0,c)、(0,-c),同前,同前,同前,(0e1),(e越接近于1越扁),例1已知椭圆方程为9x2+25y2=225,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。,10,6,8,60,解题的关键:1、将椭圆方程转化为标准方程明确a、b,2、确定焦点的位置和长轴的位置,例5电影放映灯泡的反射面是旋转椭圆面的一部分。过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上.由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点。已知建立适当的坐标系,求截口BAC所在椭圆的方程。,课本例题,练习:已知椭圆的离心率求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。,例2求适合下列条件的椭圆的标准方程经过点P(3,0)、Q(0,2);长轴长等于20,离心率3/5。一焦点将长轴分成:的两部分,且经过点,解:方法一:设方程为mx2ny21(m0,n0,mn),将点的坐标方程,求出m1/9,n1/4。,方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点,故a3,b2,所以椭圆的标准方程为,注:待定系数法求椭圆标准方程的步骤:定位;定量,或,或,练习:1.根据下列条件,求椭圆的标准方程。长轴长和短轴长分别为8和6,焦点在x轴上长轴和短轴分别在y轴,x轴上,经过P(-2,0),Q(0,-3)两点.一焦点坐标为(3,0)一顶点坐标为(0,5)两顶点坐标为(0,6),且经过点(5,4)焦距是12,离心率是0.6,焦点在x轴上。,2.已知椭圆的一个焦点为F(6,0)点B,C是短轴的两端点,FBC是等边三角形,求这个椭圆的标准方程。,例3:(1)椭圆的左焦点是两个顶点,如果到直线AB的距离为,则椭圆的离心率e=.(3)设M为椭圆上一点,为椭圆的焦点,如果,求椭圆的离心率。,小结:,本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025海洋渔业资源开发保护投资策略可持续发展规划分析报告
- 2025年新公益岗招聘试题及答案
- 2025年福建高考历史真题及答案
- 2025年通信设计制图试题及答案
- 动员投资的演讲稿
- 神话主题演讲稿题目
- 历史军事演讲稿
- 容貌缺陷演讲稿
- 高考模拟试卷真题及答案
- 2025年湖南文理学院选调1人笔试考试参考题库及答案解析
- 运动养生健康快乐-心理健康的力量与运动的价值
- 预防高坠安全专项检查表
- (内容完整)投资理财基础知识培训模板课件
- 传染病报告卡
- 句法成分课件(共18张)统编版语文八年级上册
- 纵深灭火救人操作程序及评定标准
- 产业经济学重点知识整理苏东水
- 通知书产品升级通知怎么写
- GB/T 3863-2008工业氧
- 多维阅读第8级Moon Mouse 明星老鼠的秘密
- 清华大学英语水平考试试题汇总
评论
0/150
提交评论