气相色谱法和高效液相色谱法_第1页
气相色谱法和高效液相色谱法_第2页
气相色谱法和高效液相色谱法_第3页
气相色谱法和高效液相色谱法_第4页
气相色谱法和高效液相色谱法_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,第十一章色谱分析法,PrinciplesofChromatography,2,应用举例(GC),3,应用举例(HPLC),4,第一节概述,色谱法早在1903年由俄国植物学家茨维特(Tsweett)分离植物色素时采用。后来不仅用于分离有色物质,还用于分离无色物质,并出现了种类繁多的各种色谱法。许多气体、液体和固体样品都能找到合适的色谱法进行分离和分析。目前色谱法已广泛应用于许多领域,成为十分重要的分离分析手段。,5,茨维特的实验,6,概述,色谱法:利用组分在两相间分配系数不同而进行分离的技术流动相:在管内自上而下连续流动的流体(液体或气体)。固定相:装填在玻璃管或金属管中固定不动的一相。色谱柱:装填有固定相的玻璃管或金属管。,7,概述,不管属于哪一类色谱法,其共同的基本特点是具备两个相:不动的一相,称一为固定相;另一相是携带样品流过固定相的流动体,称为流动相。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。,8,色谱法分类,1按两相状态分类气相色谱(GC):流动相为气体的色谱法。根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)液相色谱(LC):流动相为液体的色谱法。同理,液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)超临界流体色谱(SFC):流动相为超临界流体的色谱法。,9,色谱法分类,2按分离机理分类利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方法,称为凝胶色谱法或尺寸排阻色谱法。最近,又有一种新分离技术,利用不同组分与固定相(固定化分子)的高专属性亲和力进行分离的技术称为亲和色谱法,常用于蛋白质的分离。,10,色谱法分析的基本原理,一、分配系数Kp和分配比k1分配系数Kp如前所述,分配色谱的分离是基于样品组分在固定相和流动相之间反复多次地分配过程,而吸附色谱的分离是基于反复多次地吸附一脱附过程。这种分离过程经常用样品分子在两相间的分配来描述,而描述这种分配的参数称为分配系数。它是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值,即,11,色谱法分析的基本原理,2.分配比k分配比又称容量因子,它是指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。即,12,色谱法分析的基本原理,k值越大,说明组分在固定相中的量越多,相当于柱的容量大,因此又称分配容量或容量因子。它是衡量色谱柱对被分离组分保留能力的重要参数。k值也决定于组分及固定相热力学性质。它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体积有关。式中Cs,Cm分别为组分在固定相和流动相的浓度;Vm为柱中流动相的体积,即柱内固定相颗粒间的空隙体积,近似等于死体积。Vs为柱中固定相的体积,在各种不同的类型的色谱中有不同的含义。例如:在分配色谱中,Vs表示固定液的体积;在尺寸排阻色谱中,则表示固定相的孔体积。,13,色谱法分析的基本原理,3.分配系数K与分配比k的关系其中称为相比率,它是反映各种色谱柱型特点的又一个参数。,14,第二节色谱流出曲线及有关术语,一流出曲线和色谱峰,15,色谱流出曲线及有关术语,色谱流出曲线:从载气带着组分进入色谱柱起就用检测器检测流出柱后的气体,并用记录器记录信号随时间变化的曲线,此曲线就叫色谱流出曲线,当待测组分流出色谱柱时,检测器就可检测到其组分的浓度,在流出曲线上表现为峰状,叫色谱峰。,16,色谱流出曲线及有关术语,如果进样量很小,浓度很低,在吸附等温线的线性范围内,色谱峰如果对称,可用Gauss正态分布函数表示:式中:C不同时间t时某物质的浓度,C0进样浓度,tr保留时间,标准偏差。,17,色谱流出曲线及有关术语,二、基线是柱中仅有流动相通过时,检测器响应讯号的记录值,即图中Ot线稳定的基线应该是一条水平直线三、峰高(h)色谱峰顶点与基线之间的垂直距离,以h表示,如图中BA,18,保留值,1保留时间tR试样从进样开始到柱后出现峰极大点时所经历的时间,称为保留时间,如图中OB它相应于样品到达柱末端的检测器所需的时间,19,保留值,2死时间tM不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间。如图中OA。3调整保留时间tR某组份的保留时间扣除死时间后称为该组份的调整保留时间,即tR=tR-tM,20,保留值,由于组份在色谱柱中的保留时间tR包含了组份随流动相通过柱子所需的时间和组份在固定相中滞留所需的时间,所以tR实际上是组份在固定相中停留的总时间保留时间可用时间单位(如s)或距离单位(如cm)表示。保留时间是色谱法定性的基本依据,但同一组份的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积等参数进行定性检定,21,保留值,4保留体积VR指从进样开始到被测组份在柱后出现浓度极大点时所通过的流动相体积。保留体积与保留时间t。的关系如下:VR=tRqv,0qv,0为色谱柱出口载气流量,以mL/min计。,22,保留值,5死体积VM指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和当后两项很小而可忽略不计时,死体积可由死时间与流动相体积流速qv,0(mLmin)计算:VM=tMqv,06调整保留体积VR某组份的保留体积扣除死体积后,称该组份的调整保留体积,即VR=VR-VM=tRqv,0,23,保留值,7相对保留值21某组份2的调整保留值与组份1的调整保留值之比,称为相对保留值:由于相对保留值只与柱温及固定相的性质有关,而与柱径、柱长、填充情况及流动相流速无关,因此,它是色谱法中,特别是气相色谱法中,广泛使用的定性数据。必须注意,相对保留值绝对不是两个组份保留时间或保留体积之比。,24,区域宽度,色谱峰的区域宽度是组份在色谱柱中谱带扩张的函数,它反映了色谱操作条件的动力学因素度量色谱峰区域宽度通常有三种方法:1.标准偏差流出曲线上二拐点间距离之半,即0.607倍峰高处色谱峰宽的一半。2.半峰宽Wh/2即峰高一半处对应的峰宽,它与标准偏差的关系是:Wh/2=2.354,25,色谱流出曲线及有关术语,3.峰宽W即色谱峰两侧拐点上的切线在基线上的截距,如图中IJ的距离它与标准偏差的关系是:W=4,26,塔板理论,最早由Martin等人提出塔板理论,把色谱柱比作一个精馏塔,沿用精馏塔中塔板的概念来描述组分在两相间的分配行为,同时引入理论塔板数作为衡量柱效率的指标。,27,塔板理论,由塔板理论推导出的理论塔板数n的计算公式如下:而理论塔板高度(H)即:从上两式可以看出,色谱峰Y越小,n就越大,而H就越小,柱效能越高。因此,n和H是描述柱效能的指标。,28,塔板理论,由于死时间tm包括在tR中,而实际上tm不参与柱内分配,所计算的n值偏大,H偏小,与实际柱效能相差甚远。所以,采用有效理论塔板数n有效和有效塔板高H有效评价柱效能更为合理。,29,塔板理论的贡献,塔板理论有助于我们形象的理解色谱的分离过程。导出色谱流出曲线方程,它符合高斯分布,与实验现象相吻合。导出理论塔板数的计算公式,作为柱效的评价指标。,30,塔板理论的局限,塔板高度H是一个抽象的物理量,它的色谱本质是什么?它与哪些参变量有关,又怎样影响峰的扩张?对实验的指导意义有限。不能解释流速对理论塔板数的影响。有些假设不合理,如没有考虑纵向扩散对色谱分离的影响等。,31,速率理论,1956年荷兰学者VanDeemter等在研究气液色谱时,提出了色谱过程动力学理论速率理论。他们吸收了塔板理论中板高的概念,并充分考虑了组分在两相间的扩散和传质过程,从而在动力学基础上较好地解释了影响板高的各种因素。该理论模型对气相、液相色谱都适用。VanDeemter方程的数学简化式为式中u为流动相的线速度;A,B,C为常数,分别代表涡流扩散项系数、分子扩散项系数、传质阻力项系数。现分别叙述各项系数的物理意义。,32,1)涡流扩散项(A)在填充柱中,由于受到固定相颗粒的阻碍,组份在迁移过程中随流动相不断改变方向,形成紊乱的“涡流”:从图中可见,因填充物颗粒大小及填充的不均匀性同一组分运行路线长短不同流出时间不同峰形展宽。展宽程度以A表示:A=2dp其中dp填充物平均直径;填充不规则因子。,可见,使用细粒的固定相并填充均匀可减小A,提高柱效。对于空心毛细管柱,无涡流扩散,即A=0。,流动方向,33,涡流扩散项,A=2dp,涡流扩散项,均匀性因子,粒径,34,涡流扩散项A由不等路径造成的色谱峰扩展。由于柱填料粒径大小不同,粒度分布范围不一致及填充的不均匀,形成宽窄、长短不同的路径,因此流动相沿柱内各路径形成紊乱的涡流运动,有些溶质分子沿较窄且直的路径运行,以较快的速度通过色谱柱,发生分子超前,反之,有些分子发生滞后,从而使色谱峰产生扩散。,35,速率理论,2.分子扩散项B/u(纵向扩散项)纵向分子扩散是由浓度梯度造成的。组分从柱入口加入,其浓度分布的呈“塞子”状。如图所示。它随着流动相向前推进,由于存在浓度梯度,“塞子”必然自发地向前和向后扩散,造成谱带展宽。分子扩散项系数为:,B2Dg,36,B/u分子扩散项,B=2Dg:弯曲因子,填充柱色谱,1。Dg:试样组分分子在气相中的扩散系数(cm2s-1)(1)存在着浓度差,产生纵向扩散;(2)扩散导致色谱峰变宽,H(n),分离变差;(3)分子扩散项与流速有关,流速,滞留时间,扩散;(4)扩散系数:Dg(M载气)-1/2;M载气,B值。,37,速率理论,3传质阻力项Cu由于气相色谱以气体为流动相,液相色谱以液体为流动相,它们的传质过程不完全相同,现分别讨论之。对于气液色谱,传质阻力系数C包括气相传质阻力系数Cg和液相传质阻力系数Cl两项,即CCgCl,38,速率理论,气相传质过程是指试样组分从气相移动到固定相表面的过程。这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。有的分子还来不及进入两相界面,就被气相带走;有的则进入两相界面又来不及返回气相。这样,使得试样在两相界面上不能瞬间达到分配平衡,引起滞后现象,从而使色谱峰变宽。对于填充柱,气相传质阻力系数Cg为式中k为容量因子。由上式看出,气相传质阻力与填充物粒度的平方成正比、与组分在载气流中的扩散系数成反比。因此,采用粒度小的填充物和相对分子质量小的气体(如氢气)做载气,可使Cg减小,提高柱效。,39,4)流速u由方程H=A+B/u+Cu知道:当u一定时,仅在A、B、C较小时,H较小,柱效较高;反之则柱效较低,色谱峰将展宽。以u对H作图,可得H-u曲线(如图),从该曲线得到:,40,41,四、分离度与基本色谱分离方程式,图说明了柱效和选择性对分离的影响。图中(a)两色谱峰距离近并且峰形宽。两峰严重相叠,这表示选择性和柱效都很差。图中(b)虽然两峰距离拉开了,但峰形仍很宽,说明选择性好,但柱效低。图中(c)分离最理想,说明选择性好,柱效也高。,42,分离度与色谱分离基本方程式,由此可见,单独用柱效或选择性不能真实反映组分在色谱柱中分离情况,故需引人一个综合性指标分离度R。分离度是既能反映柱效率又能反映选择性的指标,称总分离效能指标。分离度又叫分辨率,它定义为相邻两组分色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,即R值越大,表明相邻两组分分离越好。一般说,当R1时,两峰有部分重叠;当R1时,分离程度可达98;当R1.5时,分离程度可达99.7。通常用R=1.5作为相邻两组分已完全分离的标志。,43,2色谱定量分析,(1)色谱定量基础色谱定量分析是基于被测物质的量与峰面积成正比。在一定色谱条件下有:,44,校正因子的测量与计算,相对校正因子由于绝对校正因子与仪器的灵敏度有关,又由于灵敏度与实验条件相关,且每一检测器的灵敏度都是不同的,它不容易测量准确,亦无通用性,所以实际工作中使用相对校正因子。,45,相对校正因子的表达式,质量校正因子摩尔校正因子相对响应值,被测组分的质量,标准物质量,分子量,46,相对校正因子的测量,理论上相对校正因子与试样、标准物质、检测器类型、载气类型有关,与其它色谱条件无关。无纯物质时或对结果准确度要求不高时,相对校正因子可通过查表得。即无纯物,手册上又无数据时,可用一些计算方法估算这些物质的相对校正因子。,47,定量方法,校正归一化法含归一化内标法含内标标准曲线法外标法含单点校正,48,校正归一化法,推导:,49,应用范围:当试样中各组分都能流出色谱柱,且在检测器上均有响应,各组分峰没有重叠时,可用此法。优点:简便、准确,当操作条件如进样量等变化时,对定量结果影响很小,该法适合于常量物质的定量。缺点:对该法的苛刻要求限制了它的使用。,50,归一化法,若各组分的定量校正因子相近或相同,则上式可简化为:,51,内标法,推导将一定量的纯物质作为内标物,加入到准确称量的试样中。,52,适用范围:当只需测定试样中某几个组分,且试样中所有组分不能全部出峰时可用。优点:受操作条件的影响较小,定量结果较准确,使用上不象归一化法那样受到限制,此法适合于微量物质的分析。缺点:每次分析必须准确称量被测物和内标物,不适合于快速分析。,53,外标法(标准曲线法),用于常规分析优点:操作简单,计算方便。缺点:结果的准确度取决于进样量的重现性和操作条件的稳定性。该法必须定量进样。,54,单点校正,当被测试样中各组分的浓度变化范围不大时而用单点校正法。即配制一个与被测组分含量十分接近的标准溶液,定量进样,计算被测物的含量。,55,56,11-3气相色谱法概述,57,用气体作为流动相的色谱法称为气相色谱法。,58,(一)气相色谱流程气相色谱法用于分离分析样品的基本过程如下图:图12.5气相色谱过程示意图载气系统、进样系统、色谱柱、检测器、记录系统。,1,59,柱长(米),I.D.(mm),.5-10,2-4,5-100,.530,5-100,.1-.25,填充柱,530系列柱,细孔径柱,填充柱,开管柱(毛细管柱),壁涂,开管柱,11-4气相色谱固定相色谱柱类型,60,气相色谱柱中固定相是影响组分分配系数的主要因素,固定相,61,11-5气相色谱检测器,热导池检测器常用TCD表示。由于结构简单,灵敏度适宜,稳定性较好,而且对所有物质都有响应,因此是应用最广、最成熟的一种检测器。热导池检测器是根据各种物质和载气的导热系数不同,采用热敏元件进行检测的。,62,热电检测器(ThermalConductivityDetector,TCD)电桥线路示意图,63,2.氢火焰离子化检测器氢火焰离子化检测器(FID)简称氢焰检测器。它具有结构简单,灵敏度高,死体积小,响应快,稳定性好的特点,是目前常用的检测器之一。但是,它仅对含碳有机化合物有响应,对某些物质,如永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢等不产生信号或者信号很弱。氢焰检测器是以氢气和空气燃烧的火焰作为能源,利用含碳化合物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。,64,氢焰检测器,图(FlameIonizationDetector,FID)示意图,65,11-6气相色谱操作条件的选择,载气种类及流速的选择柱温的选择柱长和内经的选择进样量和进样时间的选择气化温度的选择,11-8高效液相色谱分析,高效液相色谱法的特点,高压:150350105Pa高速高效:气相色谱n约为2000塔板/米液相色谱n约为30000塔板/米高灵敏度:紫外检测器:10-9g荧光检测器:10-11g,11-9高效液相色谱仪,一般具有:贮液器、高压泵、梯度洗提装置、进样器、色谱柱、检测器、数据记录和处理系统。,检测器,紫外光度检测器(ultravioletphotometricdetector):常用型检测器,检测限可达10-9gmL-1优点:这种检测器对温度和流速不敏感,适宜于梯度洗提缺点:不能用于对紫外-可见光完全不吸收的试样的检测

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论