全等三角形的判定SAS(1).ppt_第1页
全等三角形的判定SAS(1).ppt_第2页
全等三角形的判定SAS(1).ppt_第3页
全等三角形的判定SAS(1).ppt_第4页
全等三角形的判定SAS(1).ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,全等三角形的判定2,边角边公理,有两边和它们的夹角对应相等的两个三角形全等.(简写“边角边”或“SAS”),注意条件书写顺序,1.在下列图中找出全等三角形,练习一,2.在下列推理中填写需要补充的条件,使结论成立:(1)如图,在AOB和DOC中,AO=DO(已知)_=_()BO=CO(已知)AOBDOC(),AOB,DOC,对顶角相等,SAS,(2)如图,在AEC和ADB中,,AE=AD(已知)_=_()AC=AB(已知)AECADB(),A,E,B,D,C,SAS,A,A,公共角,3.已知:如图,AC=AD,CAB=DAB.求证:BC=BD.,证明:在ACB和ADB中,,AC=AD(已知),CAB=DAB(已知),AB=AB(公共边),ACBADB(SAS),BC=BD(全等三角形的对应边相等),4.已知:如图,AB=AC,AD=AE.求证:B=C,证明:在ADB和AEC中,,AB=AC(已知),A=A(公共角),AD=AE(已知),ADBAEC(SAS),(全等三角形的对应角相等),B=C,如图,有一池塘,要测池塘两端A、B的距离,可在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么量出DE的长,就是A、B的距离,为什么?,解决问题,B,A,D,E,证明:在ABC和DEC中,,AC=DC(已知),ACB=DCE(对顶角相等),BC=EC(已知),ABCDEC(SAS),AB=DE,(全等三角形的对应边相等),如图,已知:AB=AC,则添加什么条件可得ABDACD?请说明理由.,拓展(1),(1)补充A=A,AB=AC(已知),A=A(已知),AD=A(公共边),AAC(SAS),(2)补充,AB=AC(已知),AD=A(公共边),AAC(SSS),BD=CD(已知),拓展(),由“两边及其中一边的对角对应相等(SSA)”,能否判定两个三角形全等?,如图,在ABC和ABD中,,AB=AB(公共边),AC=AD(已知),=B(公共角),但ABC和ABD不全等.,课堂小结,1.边角边公理:有两边和它们的_对应相等的两个三角形全等(SAS),夹角,2.边角边公理的发现过程所用到的数学方法(包括画图、实验、猜想、分析、归纳等.),3.边角边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角)所在的两个三角形全等.,转化,公理中所出现的边与角必须在所证明的两个三角形中.公理中涉及的角必须是两边的夹角.要充分利用图形中的隐含条件,如公共边、公共角、对顶角等,用公理证明两个三角形全等需注意,1.如图,将两根钢条AA和BB的中点O连在一起,使钢条可以绕点O自由转动,就可做成测量工件内槽宽度的工具(卡钳).只要量出的长,就得出工件内槽的宽AB.这是根据什么道理呢?,2.如图,ADBC,AD=BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论