


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题一次函数的应用动点问题 教学目标1学会结合几何图形的性质,在平面直角坐标系中列函数关系式。2通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。重点、难点 理解在平面直角坐标系中,动点问题列函数关系式的方法。教学内容 例题1:已知:在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=-x+3上在第一象限内的一动点,设OPQ的面积为s。(1)设点P的坐标为(x,y),问s是y的什么函数,并求这个函数的定义域。(2)设点P的坐标为(x,y),问s是x的什么函数,并求这个函数的定义域。(3)当点P的坐标为何值时,OPQ的面积等于直线y=-x+3与坐标轴围成三角形面积的一半。例2:已知:在平面直角坐标系中,点A的坐标为(6,0),另有一动点B的坐标为(x,y),点B在第一象限,且点B的横纵坐标之和为8,设OAB的面积为s,求:(1)s与点B的横纵坐标x之间的函数关系式,并写出定义域。(2)当OAB的面积为20时,求B点的坐标。例题3:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动, 当点P运动到点B时,点Q也随之停止。如果P、Q分别从A、B同时出发,设PAD的面积为s,运动时间为t,求s与t的函数关系式?运动到何时PBQ为等腰三角形?例题4:如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标例题5如图,是边长为4的正方形边的中点,动点自点起,由匀速运动,直线扫过正方形所形成的面积为,点运动的路程为,请解答下列问题:(1)当时,求的值;(2)就下列各种情况,求与之间的函数关系式;(3)在给出的直角坐标系中,画出(2)中函数的图象课堂练习1、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒1、线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;CPQBAMN(2)线段在运动的过程中,四边形的面积为,运动的时间为求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围2. 梯形ABCD中,ADBC,B=90,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?(3)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 端午黄金活动方案
- 端午购车活动方案
- 用英语讲故事活动方案
- 福建捐赠物资活动方案
- 社工元旦普及活动方案
- 端午节促销活动策划方案
- 美甲店抽奖活动方案
- 餐饮业人才短缺现状与2025年创新培养体系构建研究报告
- 社工活动策划方案
- 线下义卖活动方案
- 关于PedSQL-4.0儿童生存质量测定量表调查
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
评论
0/150
提交评论