




已阅读5页,还剩72页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,Chapter0:Introduction,mathematicalnotation,prooftechniques,2,0.2.1StandardSetTheoryreview,Asetisanunorderedcollectionofobjects.Elements(members)DonotdistinguishrepetitionsoftheelementsMultiset-Dodistinguishrepetitionsoftheelements7,7and7Singleton-mayhaveonlyoneelementTheemptysetwithnoelementatall:NonemptyNaturalnumbersN(0inclusive)IntegersZ,3,written,ListingRefertoothersetsandproperties,4,5,6,Setoperations,Union:ABIntersection:ABComplement:ADifference:A-BDisjointSets:AB=Null,7,LawsandProperties,CommutativelawAssociativelawDistributivelawAbsorptionlawDemoganslawIdempotentlaw,8,SuperSet,Acollectionofanysets,9,10,Coverage,Differencebetweencoverageandpartition,11,0.2.2sequencesandtuples,HowtoexpressrelationsbetweenobjectsThelanguageofsetsFortheobjectsbelongtotherelationNotheobjectsnotdistinguished,12,OrderedPairs,13,Cartesianproduct,14,Binaryrelation,15,Orderedtuple,Ordered2-tupleorderedpairsOrdered3-tupleorderedtriplesOrdered4-tuplequadruplesOrdered5-tuplequintuplesOrdered6-tuplesextuplesSequenceisanorderedn-tupleforsomeunspecifiedn,wherenisthelengthofthesequence.N-foldCartesianproduct,16,N-aryrelation,1-aryrelationunaryrelations2-aryrelationbinaryrelations3-aryrelationternaryrelations,17,18,5composition,QR=(a,b):forsomec,(a,c)Qand(c,b)R,Compositionoff:ABandg:BCisafunctionhfromAtoCsuchthath(a)=g(f(a).,19,6specialtypesofbinaryrelations,directedgraphNodeEdgesNotes:donotallow“parallelarrows”.Adjacentmatrix,20,Propertiesofrelations,ReflexiveSymmetricAsymmetricAnti-symmetricTransitive,21,Reflexive,ArelationRAAisreflexiveif(a,a)RforeachaA.Thedirectedgraphrepresentingareflexiverelationhasaloopfromeachnodetoitself.Whatisthecharacteristicsofitsmatrix?Alloftheelementsonthediagonallineofitsmatrixare1.,22,Symmetric,ArelationRAAissymmetricif(b,a)Rwhenever(a,b)R.Inthedirectedgraphrepresentingasymmetricrelation,wheneverthereisanarrowbetweentwonodes,therearearrowsbetweenthosenodesinbothdirections.Characteristicsofmatrix?,Example:(a,b):aandbarepersonswiththesamefather,23,undirectedgraph,Asymmetricrelationwithoutpairsoftheform(a,a)isrepresentedasanundirectedgraph,orsimpleagraph.,24,Asymmetric(非对称性),ArelationRAAisasymmetricif:(a,bA(a,b)R(b,a)R),25,Antisymmetric(反对称性),ArelationRAAisanti-symmetric:a,bAab(a,b)R(b,a)R,Example1:LetPbethesetofallpersons,(a,b):a,bPandaisthefatherofb,26,Transitive,ArelationRAAistransitiveifwhenever(a,b)Rand(b,c)R,then(a,c)R.Intermsofthedirectedgraphrepresentation,transitivityisequivalenttotherequirementthatwheneverthereisasequenceofarrowsleadingfromanelementatoanelementz,thereisanarrowdirectlyfromatoz.,27,Equivalencerelation,ReflexiveSymmetricTransitive,28,EachelementofthepartitionisanequivalenceclassofA.,29,Exampleatable(relation)abouttoybrickssetU=x1,x2,x3,x4,x5,x6,x7,x8,30,ApathinabinaryrelationRisasequence(a1,.,an)forsomen1suchthat(ai,ai+1)Rfori=1,n-1;thispathissaidtobefroma1toan.Thelengthofapath(a1,.,an)isn.Thepath(a1,.,an)isacycleiftheaisarealldistinctandalso(an,a1)R.,31,32,Closuresofrelation,33,34,35,0.2.3function,1DefinitionAfunctionfromasetAtoasetBisabinaryrelationRonAandBwiththefollowingspecialproperty:foreachaA,thereisexactlyoneorderedpairinRwithfirstcomponenta.,R1=(x,y):xC,yS,andxisacityinstateyR2=(x,y):xS,yC,andyisacityinstatex,36,2expression,f:ABf(a)=b,Argumentvalue,f(a)imageofaunderf,Domain,37,3Certainkindsoffunctions,One-to-one一对一Onto满射Bijection双射,38,4InverseofabinaryrelationR-1,NoteTheinverseofafunctionneednotbeafunction.Iffisabijection,f-1isafunction.f-1(f(a)=a,foreachaA;f(f-1(b)=b,foreachbB;,39,FiniteandInfiniteSets,SizeWecalltwosetsAandBequinumerousifthereisabijectionf:AB.EquinumerosityisasymmetricrelationEquinumerosityisaequivalencerelation,1.4,40,finite,Ingeneral,wecallasetfiniteif,intuitively,itisequinumerouswith1,2,nforsomenaturalnumbern.Forn=0,1,2,nistheemptyset,soisfinite,beingequinumerouswithitself.IfAand1,2,nareequinumerous,thecardinalityofAisn,insymbol|A|.,41,infinite,AsetisinfiniteifitisnotfiniteThesetNofnaturalnumbersThesetofintegersThesetofrealsThesetofperfectsquaresNote:Notallinfinitesetsareequinumerous.,42,43,ThreeProofPrinciples,44,45,46,47,48,0.3typesofProof,ProofbyconstructionProofbycontradictionProofbyinduction,49,Example,ProofbyInduction(BaseCase)(InductionHypothesis)(InductiveStep):Nowcorrectlyprovethefollowingstatement:isdivisibleby6.,50,1.BasisStep:6divides13-1=0,clearly.,2.InductionStep:Suppose6|k3-k.,Wewanttoprovethat6|(k+1)3-(k+1)too.,Notethat(k+1)3-(k+1)=k3+3k2+2k=(k3k)+3k(k+1).,Now,6|k3-kbyassumption.,6|3k(k+1)too,since3|3k(k+1)(trivially)and2|k(k+1)(whichisaproductoftwoconsecutiveintegers).,Thus6|(k+1)3-(k+1)=(k3k)+3k(k+1).,51,0.2.5representinformation,Theabilitytorepresentinformationiscrucialtocommunicatingandprocessinginformation.Humansocietiescreatedspokenlanguagestocommunicateonabasiclevel,anddevelopedwritingtoreachamoresophisticatedlevel.TheEnglishlanguage,forinstance,initsspokenformreliesonsomefinitesetofbasicsoundsasasetofprimitives.Thewordsaredefinedintermoffinitesequencesofsuchsounds.Sentencesarederivedfromfinitesequencesofwords.Conversationsareachievedfromfinitesequencesofsentences,andsoforth.WrittenEnglishusessomefinitesetofsymbolsasasetofprimitives.Thewordsaredefinedbyfinitesequencesofsymbols.Sentencesarederivedfromfinitesequencesofwords.Paragraphsareobtainedfromfinitesequencesofsentences,andsoforth.,52,Similarapproacheshavebeendevelopedalsoforrepresentingelementsofothersets.Forinstance,thenaturalnumbercanberepresentedbyfinitesequencesofdecimaldigits.Computations,likenaturallanguages,areexpectedtodealwithinformationinitsmostgeneralform.Consequently,computationsfunctionasmanipulatorsofintegers,graphs,programs,andmanyotherkindsofentities.However,inrealitycomputationsonlymanipulatestringsofsymbolsthatrepresenttheobjects.Thepreviousdiscussionnecessitatesthefollowingdefinitions.,53,Alphabets,Afinite,nonemptyorderedsetwillbecalledanalphabetifitselementsaresymbols.exampleSymbols-letters,numerals,andothercommoncharacterssuchas$or#.,54,Strings,Afinitesequenceofsymbolsfromagivenalphabetwillbecalledastringoverthealphabet.Astringthatconsistsofasequencea1,a2,.,anofsymbolswillbedenotedbythejuxtapositiona1a2an.Stringsthathavezerosymbols,calledemptystrings,willbedenotedby.,55,Example,=a,.,zand=0,.,9arealphabets.abbisastringover1,and123isastringover2.ba12isnotastringover1,becauseitcontainssymbolsthatarenotin1.Similarly,314.isnotastringover2,becauseitisnotafinitesequence.Ontheotherhand,isastringoveranyalphabet.,56,Theemptysetisnotanalphabetbecauseitcontainsnoelement.Thesetofnaturalnumbersisnotanalphabet,becauseitisnotfinite.Theunionisanalphabetonlyifanorderingisplacedonitssymbols.,57,Example,0,1isabinaryalphabet,and1isaunaryalphabet.11isabinarystringoverthealphabet0,1,andaunarystringoverthealphabet1.Thelengthofastringisitslengthasasequence.Wedenotethelengthofastringwby|w|.11isastringoflength2,|=0,and|01|+|1|=3.,58,Operationsofstrings,ConcatenationSubstringExponentiationReversal,59,concatenation,60,61,62,reversal,63,Theuniverseofstringsisausefulmediumfortherepresentationofinformationaslongasthereexistsafunctionthatprovidestheinterpretationfortheinformationcarriedbythestrings.Aninterpretationisjusttheinverseofthemappingthatarepresentationprovides,thatis,aninterpretationisafunctiongfrom*toDforsomealphabetandsomesetD.Thestring111,forinstance,canbeinterpretedasthenumberonehundredandelevenrepresentedbyadecimalstring,asthenumbersevenrepresentedbyabinarystring,andasthenumberthreerepresentedbyaunarystring.,64,Thepartiescommunicatingapieceofinformationdotherepresentingandinterpreting.Therepresentationisprovidedbythesender,andtheinterpretationisprovidedbythereceiver.Theprocessisthesamenomatterwhetherthepartiesarehumanbeingsorprograms.Consequently,fromthepointofviewofthepartiesinvolved,alanguagecanbejustacollectionofstringsbecausethepartiesembedtherepresentationandinterpretationfunctionsinthemselves.,65,Example,IfRistherelation(,),(,01),thenR-1=(,),(01,),R0=(,),andR2=(,),(,01),(,0101).,66,67,language,Ingeneral,ifisanalphabetandLisasubsetof*,thenLissaidtobealanguageover,orsimplyalanguageifisunderstood.EachelementofLissaidtobeasentenceorawordorastringofthela
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重难点解析人教版八年级上册物理光现象《光的反射》同步练习试题(含答案及解析)
- 电线杆防电知识培训课件
- 2024年春八年级生物下册 第8单元 第1章 第2节 免疫与计划免疫说课稿 (新版)新人教版
- 第1课 从互联网到物联网说课稿-2025-2026学年初中信息科技湘教版2024八年级上册-湘教版2024
- 七年级信息技术 录制声音说课稿 青岛版
- 第二课 获取网络信息说课稿-2025-2026学年初中信息技术(信息科技)初中一年级(上册)教科版(云南)
- 2025-2030基因编辑作物监管政策国际比较与商业化前景
- 2025-2030基因治疗药物临床试验进展与监管审批制度改革影响评估
- 2025-2030基因治疗技术临床应用进展与投资风险评估
- 2025-2030基因检测技术服务市场教育水平与消费者接受度调研分析报告
- 《新媒体概论(第三版)》课件第5章
- 旅游饭店服务技能大赛客房服务比赛规则和评分标准
- 三国全面战争秘籍大全
- DBJ50-112-2016 现浇混凝土桥梁梁柱式模板支撑架安全技术规范
- 城市轨道交通运营管理毕业论文题目
- DB22T 5036-2020 建设工程项目招标投标活动程序标准
- 《增殖工程与海洋牧场》人工鱼礁场的配置课件
- 鼻内镜鼻腔泪囊吻合术PPT医学课件(PPT 23页)
- 第5章-电感式传感器
- 机动车检测站公司员工奖惩办法
- CAD考试模拟试卷
评论
0/150
提交评论