




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2三角形全等的判定(1),AB=ABBC=BCCA=CAA=AB=BC=C,1、什么叫全等三角形?,能够完全重合的两个三角形叫全等三角形。,2、全等三角形有什么性质?ABCABC,知识回顾,情境问题:,小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?,1.只给一个条件(一组对应边相等或一组对应角相等)。,只给一条边:,只给一个角:,探究:,2.给出两个条件:,一边一内角:,两内角:,两边:,可以发现按这些条件画的三角形都不能保证一定全等。,动手操作,验证猜想,先任意画出一个ABC,再画出一个ABC,使AB=AB,BC=BC,AC=AC把画好的ABC剪下,放到ABC上,它们全等吗?,画法:(1)画线段BC=BC;(2)分别以B、C为圆心,BA、BC为半径画弧,两弧交于点A;(3)连接线段AB,A.,B,C,A,B,C,A,三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,把所画的三角形分别剪下来,并与同伴比一比,发现什么?,探究新知,判断两个三角形全等的推理过程,叫做证明三角形全等。,AB=DEBC=EFCA=FD,用数学语言表述:,在ABC和DEF中,ABCDEF(SSS),例1.如下图,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架。求证:ABDACD,分析:要证明ABDACD,首先看这两个三角形的三条边是否对应相等。,应用迁移,准备条件:证全等时要用的间接条件要先证好;,三角形全等书写三步骤:,1.写出在哪两个三角形中,2.摆出三个条件用大括号括起来,3.写出全等结论,证明的书写步骤:,归纳,作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,B,C,A,作法:(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,C,A,O,D,B,C,A,作法:(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,C,A,O,D,B,C,A,作法:(4)过点D画射线OB,则AOB=AOB,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,B,C,A,O,D,B,C,A,作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D;(4)过点D画射线OB,则AOB=AOB,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,1.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?,解:要证明ABCFDE,还应该有AB=DF这个条件,DB是AB与DF的公共部分,且AD=BFAD+DB=BF+DB即AB=DF,练一练,2.如图,AB=AC,AE=AD,BD=CE,求证:AEBADC。,证明:BD=CEBD-ED=CE-ED,即BE=CD。,在AEB和ADC中,AB=ACAE=ADBE=CDAEBADC,3、如图,在四边形ABCD中,AB=CD,AD=CB,求证:A=C.,D,A,B,C,证明:在ABD和CDB中,AB=CD,AD=CB,BD=DB,ABDACD(SSS),(已知),(已知),(公共边),A=C(全等三角形的对应角相等),解:,E、F分别是AB,CD的中点(),又AB=CD,AE=CF,在ADE与CBF中,AE=,=,ADECBF(),AE=ABCF=CD(),补充练习:,如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.,ADECBF,A=C,线段中点的定义,CF,AD,AB,CD,SSS,ADECBF,全等三角形对应角相等,已知,CB,A=C(),=,BC,BC,DCB,BF=DC,或BD=FC,A,B,C,D,解:ABCDCB理由如下:AB=CDAC=BD=,ABD(),SSS,如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。,(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使ABFECD,还需要条件?,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抖音非遗文化内容传播与运营合同
- 生物检测试剂盒研发项目资金投入与收益分配合同
- 静脉留置护理操作规范
- 网络游戏虚拟货币发行与市场秩序维护补充协议
- 跨界合作互联网平台会员权益互认合同
- 儿童文学影视改编独家授权协议
- 心理教师考试试题及答案
- 智能零售企业会员积分系统升级及品牌合作支持补充协议
- 网红甜品店区域代理独家销售合同
- 老年人探视期间安全保障及责任承担协议
- 舒适化医疗麻醉
- 露营地合伙人合同协议书范本
- 2024年315消费者权益保护知识竞赛题库及答案(完整版)
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务1)试题及答案
- 2023年高考真题-地理(河北卷) 含答案
- DB50-T 1649-2024 餐饮业菜品信息描述规范
- GB/T 17775-2024旅游景区质量等级划分
- 山东省东营市2024年中考英语真题(含答案)
- 物流无人机垂直起降场选址与建设规范
- DBJ50-T-417-2022 建筑施工高处坠落防治安全技术标准
- 医院物业挂靠协议书
评论
0/150
提交评论