




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.3导数与函数的零点及参数范围,-2-,判断、证明或讨论函数零点个数解题策略一应用单调性、零点存在性定理、数形结合判断例1设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f(x)零点的个数;(2)证明当a0时,f(x)2a+aln.难点突破(1)讨论f(x)零点的个数要依据f(x)的单调性,应用零点存在性定理进行判断.,-3-,(2)证明由(1),可设f(x)在(0,+)的唯一零点为x0,当x(0,x0)时,f(x)0.故f(x)在(0,x0)单调递减,在(x0,+)单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).,解题心得研究函数零点或方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断函数零点或方程根的情况.,-4-,对点训练1已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明当k0.当x0时,g(x)=3x2-6x+1-k0,g(x)单调递增,g(-1)=k-10时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)xh(x).h(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+)单调递增,所以g(x)h(x)h(2)=0,所以g(x)=0在(0,+)没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.,-6-,解题策略二分类讨论法例2已知函数f(x)=x3+ax+,g(x)=-lnx.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用minm,n表示m,n中的最小值,设函数h(x)=minf(x),g(x)(x0),讨论h(x)零点的个数.难点突破(1)设切点(x0,0),依题意f(x0)=0,f(x0)=0,得关于a,x0的方程组解之.(2)为确定出h(x)对自变量x0分类讨论;确定出h(x)后对参数a分类讨论h(x)零点的个数,h(x)零点的个数的确定要依据h(x)的单调性和零点存在性定理.,-7-,解(1)设曲线y=f(x)与x轴相切于点(x0,0),则f(x0)=0,f(x0)=0,(2)当x(1,+)时,g(x)=-lnx0.,所以f(x)在区间(0,1)内单调递减,在区间(1,+)内单调递增.所以x=1时,函数f(x)取得最小值f(1)=.,-11-,则f(x)0,f(x)为增函数.所以f(x)在x=1时取得最小值f(1)=-a-.,由于x0(从右侧趋近0)时,f(x)+;x+时,f(x)+,所以f(x)有两个零点.,-12-,当00,f(x)为增函数;x(a,1)时,f(x)0,f(x)为增函数.所以f(x)在x=a处取极大值,f(x)在x=1处取极小值.,当0a1时,f(a)1时,求证:函数f(x)在(0,+)内单调递增;(2)若函数y=|f(x)-t|-1有三个零点,求t的值.难点突破(1)先求f(x)的导函数f(x),再证明f(x)0.(2)由题意当a0,a1时,f(x)=0有唯一解x=0,y=|f(x)-t|-1有三个零点f(x)=t1有三个根,从而t-1=(f(x)min=f(0)=1,解得t即可.,-15-,(1)证明f(x)=axlna+2x-lna=2x+(ax-1)lna.由于a1,故当x(0,+)时,lna0,ax-10,所以f(x)0,故函数f(x)在(0,+)上单调递增.(2)解当a0,a1时,f(x)=2x+(ax-1)lna,f(x)=2+ax(lna)20,f(x)在R上单调递增,因为f(0)=0,故f(x)=0有唯一解x=0.所以x,f(x),f(x)的变化情况如表所示:又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t1有三个根,而t+1t-1,所以t-1=f(x)min=f(0)=1,解得t=2.,-16-,解题心得在已知函数y=f(x)有几个零点求f(x)中参数t的值或范围问题,经常从f(x)中分离出参数t=g(x),然后用求导的方法求出g(x)的最值,再根据题意求出参数t的值或范围.,-17-,对点训练3已知函数f(x)=2lnx-x2+ax(aR).(1)当a=2时,求f(x)的图象在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.,切线的斜率k=f(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.,-18-,-19-,解题策略二分类讨论法例4(2017吉林市三模,文20)已知函数f(x)=,曲线y=f(x)在点(e2,f(e2)处的切线与直线2x+y=0垂直(其中e为自然对数的底数).(1)求f(x)的解析式及单调减区间;,对k讨论,运用单调性和函数零点存在定理,即可得到k的范围.,-20-,当k0时,h(x)0恒成立,故无零点,满足条件.,-22-,当k2时,h(e-k)0,综上可得,k的取值范围为k0或k=2.,解题心得在已知函数零点个数的情况下,求参数的范围问题,通常采用分类讨论法,依据题目中的函数解析式的构成,将参数分类,在参数的小范围内研究函数零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即为所求参数范围.,-23-,对点训练4已知函数f(x)=(x-2)ex+a(x-1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.,解(1)f(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).()设a0,则当x(-,1)时,f(x)0.所以f(x)在(-,1)单调递减,在(1,+)单调递增.()设a0;当x(ln(-2a),1)时,f(x)0;当x(1,ln(-2a)时,f(x)0,则由(1)知,f(x)在(-,1)单调递减,在(1,+)单调递增.,所以f(x)有两个零点.()设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.,又当x1时f(x)0,故f(x)不存在两个零点;,-25-,若aa0时,h(a)0,所以满足条件的最小正整数a=3.,-30-,因为t0,所以m(t)0,当且仅当t=1时,m(t)=0,所以m(t)在(0,+)上是增函数.又m(1)=0,所以当t(0,1),m(t)0,h(x)在(0,+)递增;a+10即a-1时,x(0,1+a)时,h(x)0,h(x)在(0,1+a)递减,在(1+a,+)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融产品居间推广法律文件模板合同
- 2025年度拆迁安置房个人购房合同(含车位及绿化)
- 2025年文化产业园产业集聚与服务体系中的文化产业发展与区域文化产业发展战略报告
- 2025版智能门锁零部件定制采购合同规范文本
- 2025年石膏板原材料采购与质量保证合同
- 2025年国际贸易担保借款合同
- 2025年度船舶节能减排运输合作协议书
- 2025版婚内反家暴教育与法律支持服务协议
- 2025年防盗门工程预算编制及合同
- 2025电商企业年度客户关系管理与运营合同
- 房地产 -衢州市城市环境无障碍设计导则城市街区
- 一年级新生报名登记表
- 《体育游戏》课程标准
- 制程能力管理办法实用文档
- GB/T 451.3-2002纸和纸板厚度的测定
- GB/T 1303.2-2009电气用热固性树脂工业硬质层压板第2部分:试验方法
- 子痫前期子痫课件
- 部编版《县委书记的榜样-焦裕禄》课件1
- 汽车保养基础知识优秀课件
- 青少年运动员 运动损伤的预防 课件
- 2022年十部经典的三级片电影
评论
0/150
提交评论