




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
忆一忆,1、全等三角形的对应边-,,对应角-,相等,相等,2、判定三角形全等的方法有:,SAS、ASA、AAS、SSS,直角边,直角边,斜边,认识直角三角形,RtABC,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,直角三角形全等的判定,舞台背景的形状是两个直角三角形,工作人员想知道两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住,无法测量。,(1)你能帮他想个办法吗?,根据SAS可测量其余两边与这两边的夹角。,根据ASA,AAS可测量对应一边和一锐角,工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等。于是,他就肯定“两个直角三角形是全等的”。,你相信这个结论吗?,(2)如果他只带一个卷尺,能完成这个任务吗?,让我们来验证这个结论。,斜边和一条直角边对应相等两个直角三角形全等,动动手做一做,用三角板和圆规,画一个RtABC,使得C=90,一直角边CA=4cm,斜边AB=5cm.,动动手做一做,Step1:画MCN=90;,动动手做一做,Step1:画MCN=90;,Step2:在射线CM上截取CA=4cm;,A,Step1:画MCN=90;,Step2:在射线CM上截取CA=4cm;,动动手做一做,Step3:以A为圆心,5cm为半径画弧,交射线CN于B;,C,N,M,A,B,Step1:画MCN=90;,C,N,M,Step2:在射线CM上截取CA=4cm;,B,动动手做一做,Step3:以A为圆心,5cm为半径画弧,交射线CN于B;,A,Step4:连结AB;,ABC即为所要画的三角形,动动手做一做比比看,把我们刚画好的直角三角形剪下来,和同桌的比比看,这些直角三角形有怎样的关系呢?,你发现了什么?,RtABC,斜边、直角边公理,有斜边和一条直角边对应相等的两个直角三角形全等.,简写成“斜边、直角边”,或“HL”,前提,条件1,条件2,斜边、直角边公理(HL),在RtABC和Rt中,AB=,BC=,RtABC,C=C=90,判断:满足下列条件的两个三角形是否全等?为什么?,1.一个锐角及这个锐角的对边对应相等的两个直角三角形.,全等,(AAS),2.一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形.,全等,判断:满足下列条件的两个三角形是否全等?为什么?,(ASA),3.两直角边对应相等的两个直角三角形.,全等,判断:满足下列条件的两个三角形是否全等?为什么?,(SAS),4.有两边对应相等的两个直角三角形.,全等,判断:满足下列条件的两个三角形是否全等?为什么?,情况1:全等,情况2:全等,(SAS),(HL),例1,已知:如图,ABC中,AB=AC,AD是高求证:BD=CD;BAD=CAD,A,B,C,D,等腰三角形三线合一,例2,已知:如图,在ABC和ABD中,ACBC,ADBD,垂足分别为C,D,AD=BC,求证:ABCBAD.,A,B,D,C,证明:ACBC,ADBDC=D=90在RtABC和RtBAD中,RtABCRtBAD(HL),A,例3,已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEF,A,B,C,P,D,E,F,Q,BAC=EDF,AB=DE,B=E,分析:ABCDEF,RtABPRtDEQ,AB=DE,AP=DQ,证明:AP、DQ是ABC和DEF的高APB=DQE=90在RtABP和RtDEQ中,AB=DE,AP=DQ,RtABPRtDEQ(HL)B=E在ABC和DEF中,BAC=EDFAB=DEB=E,ABCDEF(ASA),思维拓展,已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEF,A,B,C,P,D,E,F,Q,变式1:若把BACEDF,改为BCEF,ABC与DEF全等吗?请说明思路。,小结,已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEF,A,B,C,P,D,E,F,Q,变式1:若把BACEDF,改为BCEF,ABC与DEF全等吗?请说明思路。,变式2:若把BACEDF,改为AC=DF,ABC与DEF全等吗?请说明思路。,思维拓展,小结,已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEF,A,B,C,P,D,E,F,Q,变式1:若把BACEDF,改为BCEF,ABC与DEF全等吗?请说明思路。,变式2:若把BACEDF,改为AC=DF,ABC与DEF全等吗?请说明思路。,变式3:请你把例题中的BACEDF改为另一个适当条件,使ABC与DEF仍能全等。试证明。,思维拓展,小结,小结,“SAS”,“ASA”,“AAS”,“SSS”,“SAS”,“ASA”,“AAS”,“HL”,灵活运用各种方法证明直角三角形全等,应用,“SSS”,已知:如图,D是ABC的BC边上的中点,DEAC,DFAB,垂足分别为E,F,且DE=DF.求证:ABC是等腰三角形.,学以致用,如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各地区市场规模及增长趋势统计表
- 地理信息系统GIS应用实践操作题
- 国有企业财务内控管理的数字化转型路径
- 建立完善的反馈与监督机制以持续改进防治策略
- 乡村医疗卫生人才激励机制与职业发展支持
- 游戏娱乐行业市场份额报告表格
- 智慧中医医院质量控制与安全保障措施
- 现代汽车技术故障诊断与维修技能测试卷
- 激励机制在家庭医生签约服务中的优化策略
- 校园一角的美景描写周记(10篇)
- 国开《调剂学》形考任务二题库及答案
- 现实主义 完整版课件
- 土工膜施工规范
- 剑桥通用英语PET真题4
- 轨道交通工程监测管理手册
- 文物修复师国家职业技能标准
- 冀教版五年级下学期语文期末考试过关检测卷
- 电影编剧劳动合同范本
- 赛艇考试标准
- 外墙岩棉夹芯板施工方案图文
- 球墨铸铁管件项目可行性研究报告写作范文
评论
0/150
提交评论