平面一般力系_第1页
平面一般力系_第2页
平面一般力系_第3页
平面一般力系_第4页
平面一般力系_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面一般力系,力的平移定理平面力系简化平衡方程,有什么特点?,各力的作用线不汇交于一点,请Shift+F5,平面一般力系各力的作用线都在同一平面内,但既不汇交于一点,也不平行。,F1,F2,Fn,平面汇交力系和平面力偶系是平面一般力系的特例。平面一般力系是工程中最常见的力系。,一、力的平移定理作用在刚体上的力F,可以平移到同一刚体上的任一点O,但必须同时增加一附加力偶,附加力偶的力偶矩M等于原力F对新作用点O之矩。这就是力的平移定理。,F,d,M,F,F,F,O,O,O,A,A,A,这就相当于把力F移到了O点,同时增加了一个附加力偶,其力偶矩为:M=MO(F)=Fd,把F由原来的A点平移到O点,可以吗?,根据加减平衡力系公理,在O点加上一对与F平行且等值、反向力F和F”,使F=F=F”,则F和F”构成了一个力偶,其附加力偶矩为:M=Fd,力的平移定理由此得证,请Shift+F5,问题:力F对齿轮和轴各有什么作用?,r,O,F,M,动画,力的平移定理应用,在原力F作用下齿轮会转轴会弯曲,请Shift+F5,(1)为什么钉子有时会折弯?,(2)乒乓球为什么会旋转?,F,F,M,M,F,F,晕!,锤子砸偏了,力的平移定理应用,请Shift+F5,M,M,F,F,力的平移定理应用,(3)攻丝时为什么要用两只手?,平衡力系,请Shift+F5,M,F,力的平移定理应用,(4)攻丝时用一只手行吗?,在F作用下丝锥会断,力不平衡,问题1:图中的平面一般力系对刚体的作用效果是怎样的?,问题2:能否将平面一般力系F1,F2Fn中各力都向刚体的某点平移?假如可以的话,就能够像平面汇交力系那样,对各力进行合成了。,刚体平衡吗?不知道!平面一般力系可以直接合成吗?平面一般力系不是汇交力系,不可以直接合成!,O,A,B,N,力的平移定理应用,(简化中心),F1,F2Fn,请Shift+F5,二、平面一般力系的简化(一)平面一般力系的主矢与主矩设在刚体上作用有一平面一般力系F1,F2,Fn(如图a)。在该力系所在的平面内任取一点O,该点称为简化中心。应用力的平移定理,将力系中的各力都平移到O点,于是就得到一个汇交于O点的平面汇交力系F1,F2,Fn和一个力偶矩分别为M1,M2,Mn的附加力偶系(如图b)。将各力和各力偶矩分别合成,可得到一个力和一个力偶(如图c)。,O为任意点,图a,图b,图c,力的平移定理应用,平面一般力系的简化过程,F,O为任意点,平面一般力系(未知力系),向一点简化,平面汇交力系+平面力偶系(可知力系),平面汇交力系,合力F,作用于简化中心O;,平面力偶系,合力偶,其力偶矩MO,作用于刚体平面。,F1,F2,Fn,F1,F2,Fn+M1,M2,Mn,合成,合成,所得平面汇交力系(F1,F2,Fn)可以合成为一个作用于O点的合矢量F:F=Fi=Fi合矢量F称为原平面一般力系对简化中心O的主矢(如图c)。所得的平面附加力偶系(M1,M2,Mn)可以合成为一个的力偶,其力偶矩MO等于各力对简化中心O之矩的代数和:MO=MO(Fi)=Fidi力偶矩MO称为原平面一般力系对简化中心O的主矩。,图a,图b,图c,思考:平面一般力系的主矢是否就是该力系简化后的合力?主矢和合力有何区别?,主矢是原力系F1,F2,Fn中各力的矢量和。主矢是自由矢量,只有大小、方向,而不涉及作用点,是一个自由矢量,与简化中心无关。合力为作用点在简化中心O的力矢量。合力的大小、方向与主矢一致,与原力系等效,有大小、方向、作用点,是滑移矢量。只有求出合力,才能知道主矢的大小和方向。,平面一般力系简化的结论1、平面一般力系向作用平面内任一点O简化后,可得到一个力和一个力偶。2、这个力的大小和方向与原力系的主矢相同,作用于简化中心O点;3、这个力偶的力偶矩等于原力系对简化中心O点的主矩,大小为原力系中各力对简化中心O点之矩的代数和;4、主矢与简化中心的选择无关。但一般情况下,平面力系的主矩与简化中心的选择有关。,力的平移定理的性质:问题1:为什么平面一般力系的主矢与简化中心的选择无关,而主矩与简化中心的选择有关?答:这就要看,把作用在刚体上某点的力F平行移到其它点,所得的力和附加力偶是否相同?当力F平移时,力的大小、方向都不改变;一般情况下,附加力偶的力偶矩的大小、正负都要随新指定点的位置的不同而不同。,下面我们就来证明,请Shift+F5,F1,A,F,C,B,F1,F3,F2,A,F1,F3,F2,A,F3,F2,F,A,F1,F3,F2,F,O1,F1,F3,F2,F,O2,F1,F3,F2,F,O3,F3,F2,F,有一力系作用于刚体平面内,将各力向A点简化并求出合力,这是求合力的方法之一,F1,无论将力系向刚体内的哪一点简化,合力的大小、方向都不会变化。所以说主矢与简化中心的选择无关。,那么,主矩又会怎样呢?,将力系向刚体内的另一点简化,A,F1,F3,F2,F,O1,F1,F3,F2,F,O2,F1,F3,F2,F,O3,F3,F2,F,F1,显然,M1=-Fd1(顺时针)M2=-Fd2(顺时针)M3=+Fd3(逆时针)选择不同的简化中心,各力对A点的力臂都不同,转向也不同,就是说M1M2M3。因此,在一般情况下,平面力系的主矩和简化中心的选择有关。,d1,d2,d3,A,F,O1,F,O2,F,O3,F,d1,d2,d3,“在一般情况下”那么,特殊情况呢?,当O1、O2、O3选在原合力F的作用线上时,M1=M2=M3=0,力的平移定理的性质:问题2:如刚体上某点B处作用一力和一力偶,是否可利用“力的平移定理”还原一个等效的力?答:力的平移定理是可逆的。根据力向一点平移的逆过程,总可以将同平面内的一个力F和力偶矩为MO的力偶还原为一个力F,此力F与原力F大小相等、方向相同、作用线间的距离为d=MO/F,至于F在F的哪一侧,则视F的方向和MO的转向而定。,小实验,铁丝弯成L形,平面一般力系的简化结果分析:平面一般力系向一点简化,一般可得到一个主矢F和一个主矩MO,但这不是最终简化结果,最终简化结果通常有以下四种情况:1、F0,MO0表明原力系与一个力偶等效,原力系简化为一个合力偶,其力偶矩为MOMO(F),此时主矩MO与简化中心的选择无关。2、F0,MO0表明原力系与一个主矢量F等效,即F为原力系的合力,其作用线通过简化中心。,3、F0,MO0当平面一般力系的主矢及对简化中心的主矩都不等于零时,根据力的平移定理的逆过程,可以将F和MO合成为一个合力。将作用线通过O点的力F及矩为MO的力偶合成为一个作用线通过A点的一个力,此力即为原力系的合力。如图所示,且有F=F=Fi合力的大小、方向与原力系的主矢相同,合力F是在主矢F的哪一侧,则要根据主矩的正负号来确定。合力F的作用线到简化中心O的距离为:,4、F0,MO0表明原力系为平衡力系,则刚体在此力系作用下处于平衡状态。平面一般力系由O点向任意点O简化:F1,F2Fn简化得F,MOMO=MOFd(如图所示)故,只要平面一般力系向某一点简化的结果为:F0,MO0则,该力系向任一点的简化结果都为:F0,MO0,在O加上一对大小均为F的平衡力,但同时又得到了一对力偶,其力偶矩为Fd。,合成后得:MO=MOFd,1、一平面一般力系向点O简化时,主矢F0,主矩MO=0。若将该力系向另一点K简化,其主矢和主矩是:A、可能为F0,MK0;B、可能为F=0,MKMO;C、可能为F=0,MK=MO;D、不可能为F0,MKMO。,答案:A,解答:平面一般力系中,主矢与简化中心无关,主矩与简化中心有关。就是说,改变简化中心的位置不会改变主矢,只会改变主矩。已知主矢F0,即使向点K简化,仍然F0,所以B、C答案被排除。D答案是说:不可能为F0(就是说F=0),不满足上述条件。力系由点O向点K简化的结果有两种可能:1)F0,MK0;(即A答案)2)F0,MK=0。(点K在主矢的作用线上,且主矢作用线通过简化中心。),简化结果应用举例,2、一平面一般力系向点O简化时,主矢F0,主矩MO0。若将该力系向另一点K简化,其主矢和主矩是:A、可能为F=0,MK0;B、可能为F0,MK=0;C、不可能为F0,MKMO;D、可能为F0,MKMO。,解答:要看点K是否在主矢作用线上。点K若在主矢作用线上,则结果为MK=MO,点K若不在主矢作用线上,则结果为MKMO(包括MK=0)。,答案:B、D,简化结果应用举例,3、一平面一般力系向点O简化时,主矢F=0,主矩MO0。若将该力系向另一点K简化,其主矢和主矩是:A、F0,MK0;B、F0,MK=MO;C、F=0,MK=MO;D、F=0,MKMO。,答案:C为什么不选D?,解答:平面一般力系被简化为一力偶,此时主矩与简化中心所取位置无关。主矢总是零(即F=0),而力偶可以放在平面内任意一点,即力偶对于平面内任一点的力偶矩都相同(即MK=MO)。,简化结果应用举例,三、平面一般力系的平衡条件当主矢和主矩都等于零时,则说明这一任意力系是平衡力系;反之,若平面一般力系是平衡力系,则它向任意点简化的主矢和主矩必同时为零。所以,平面一般力系平衡的充要条件为:力系的主矢及力系对任一点的主矩均为零,即:F=0MO=0,上式就是平面一般力系的平衡方程。它表明,平面一般力系平衡时,力系中各力在任选的直角坐标系的两个坐标轴上投影的代数和分别为零,各力对任意点之矩也为零。该式最多可解出三个未知量。此外,还有二矩式和三矩式平衡方程。,平衡方程的其他形式:二力矩式的平衡方程二力矩式的平衡方程是由一个投影方程和两个力矩方程所组成,可写为:Fix=0MA(Fi)=0MB(Fi)=0(注意:A、B两点的连线不能与x轴垂直),思考:应用二矩式平衡方程时,为何A、B连线不能垂直于x轴由MA(F)=0,MB(F)=0可知,力F的作用线同时通过A、B两点,所以该力系不可能被简化为一个力偶,只能简化为过A、B两点连线的合力或者处于平衡状态。(注:当方程组中为Fy=0时,A、B连线不能垂直于y轴)细说若力系向A点简化,假设合力F的作用线不通过A、B连线(如左图):MA(F)=0?:当F对A点取矩时,MA0,MA(F)=0成立;MB(F)=0?:当F对B点取矩时,MBFd0,MB(F)=0不成立。要使MB=0,只有使F的作用线通过A、B连线或者F=0;Fx=0:即Fx=Fcos=0,只有当cos0时,才能肯定F=0。因此必须90,即A、B连线不能垂直于x轴(如右图)。,三力矩式的平衡方程三力矩式的平衡方程是由三个力矩方程所组成,可写为:MA(Fi)=0MB(Fi)=0MC(Fi)=0(注意:A、B、C三点不能在一条直线上),细说:A、B、C三点不能共线,三矩式平衡方程:MA(Fi)=0MB(Fi)=0MC(Fi)=0A、B、C三点不能在同一直线上。思考:应用三矩式方程时,为何A、B、C三点不能在同一直线上?由前两式可知,力系不可能简化为一力偶,只能简化为作用线过A、B两点的一个合力或处于平衡状态,再如果MC(Fi)=0,力系只能简化为过A、B、C三点的一个合力F或处于平衡状态,若三点不在同一直线上,则唯一的可能就是力系平衡(合力F=0),如图。,如果A、B、C三点不共线,显然MA(Fi)=0,MB(Fi)=0,但要使各力对C点之矩MC(Fi)=0,只能是合力F=0,即刚体处于平衡状态。(由于C点与A、B不共线,要使MC(Fi)=0,只能是合力F=0,即Fx=0、Fy=0,三矩式方程又变回到前面的二矩式方程了),如果A、B、C三点共线,显然MA(Fi)=0,MB(Fi)=0,MC(Fi)=0,但是否F=0,无法判断!即不能肯定刚体是否平衡。,应用平面一般力系平衡方程解题的技巧步骤如下:(1)确定研究对象。根据题意分析已知量和未知量,选取适当的研究对象。(2)画受力图。在研究对象上画出它所受到的所有主动力和约束反力。(3)列方程求解。以解题简捷为标准,选取适当形式的平衡方程、矩心和投影轴(一般矩心应尽量取在较多未知力的汇交点上,二投影轴应尽量与较多的未知力垂直),列出平衡方程求解未知量。(4)校核。,小结,例18梁AB一端固定,一端自由。梁上作用有均布载荷,载荷集度为q(kN/m),在梁的自由端还受集中力F和力偶矩为M的力偶的作用,梁的长度为l,试求固定端A处的约束反力。,解:1、取AB为研究对象并画出受力图;2、列平衡方程求解。,ql,q,四、平面平行力系的平衡方程平面平行力系各力作用线处于同一平面内且互相平行的力系,称为平面平行力系。它是平面一般力系的一种特殊情况,其平衡方程可由平面一般力系的平衡方程导出。,在如图所示的平面平行力系中设立坐标系,令y轴平行于各力,则平面平行力系中各力在x轴上的投影均为零,即Fx0,于是由(117)可得平面平行力系的平衡方程:Fiy=0MO(Fi)=0,平面平行力系的平衡方程也可用力矩式表达(注意:其中AB连线不能与各力的作用线平行):MA(Fi)=0MB(Fi)=0结论:平面平行力系平衡的必要和充分条件是:力系中各力的代数和等于零,同时各力对任一点之矩的代数和也等于零。,例:塔式起重机如图所示。已知机身重W1=220kN,作用线通过塔架的中心,最大起吊重量W2=50kN,起重臂长12m,轨道A、B的间距为4m,平衡块重W3到机身中心线的距离为6m。试求:(1)能保证起重机不会翻倒时平衡块的重量W3。(2)当平衡块的重量W3=30kN而起重机满载时,轨道A、B的约束反力。【解】取起重机为研究对象,起重机在起吊重物时,作用在它上面的力有重力W1、W2、W3以及轨道的约束反力FNA、FNB,(FNA、FNB的方向为铅垂向上)。以上各力组成一平面平行力系。起重机起吊重物时的受力图。,(1)求能保证起重机不会翻倒时平衡块的重量W3。当满载时(W2=50kN),起重机平衡的临界状态(将翻未翻时)表现为FNA=0,这时由平衡方程求出的W3是所允许的最小值。由平衡方程的力矩式MB(F)=0,W12+W3min8-W210=0得W3min=(W210-W12)/8=(5010-2202)/8=7.5kN当空载时(W2=0),起重机平衡的临界情况表现为NB=0,这时由平衡方程求出的W3是所允许的最大值。由平衡方程的力矩式MA(F)=0,W3max4-W12=0得W3max=W12/4=110kN,要保证起重机不会翻倒,平衡块重量W3的大小应在这两者之间,即7.5kNW3110kN,(2)取W3=30kN,求满载时轨道A、B的约束反力FNA、FNB。当W3=30kN时,满足起重机正常工作所需W3值的范围。此时,起重机在图示的各力作用下处于平衡状态。由MB(F)=0,W12+W38-NA4-W210=0得FNA=(W12+W38-W210)/4=45kN由MA(F)=0,W34-W12+NB4-W214=0得FNB=(W12+W214-W34)/4=225kN,五、物系的平衡前面我们讨论的都是单个物体的平衡问题,但在工程实际中机械和结构都是由若干个物体通过适当的约束(连接)方式组成的系统,力学上称为物体系统,简称物系。物系以外的物体作用于这个物系的力,称为这个物系的外力;物系内各物体间相互作用的力,称为这个物系的内力。求解物系的平衡问题,往往是不仅需要求物系的外力,而且还要求系统内部各物体之间的相互作用的内力,这就需要将物系中某些物体分离出来单独研究,才能求出全部未知力。当物系平衡时,组成物系的各部分也是平衡的。因此,求解物系的平衡问题,即可选整个物系为研究对象,也可选局部或单个物体为研究对象。对整个物系来说,内力总是成对出现的,所以研究整个物系的平衡时,这些内力无需考虑。,求解物体系平衡问题的步骤(1)分析题意,选取适当的研究对象物体系统整体平衡时,其每个局部也必然平衡。因此,研究对象可取整体,也可以取其中一部分物体或单个物体。选取的原则是尽量做到一个平衡方程只含一个未知量,尽可能避免解联立方程。(2)画出研究对象的受力图在受力分析中注意区分内力与外力,受力图上只画外力不画内力,两物体间的相互作用力要符合作用力与反作用力定律。(3)对所选取的研究对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论