




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金融风险管理的新视角计算实验金融思想与探索,报告人张维2011-11-29北京,Page.2,引言,2008年爆发的全球性金融危机至今依然徘徊在世界的上空,向人们揭示了在一个资讯发达、技术高超、人性贪婪的社会中,金融系统是多么复杂这次金融危机再次向我们揭示了一个深刻道理:在一个复杂金融体系中,金融风险和危机往往以意想不到的形态和方式突袭我们的经济和社会因此,人们也无数次梦想拥有一个超级金融水晶球能够预知未来,Page.3,2016年的一天早上,电子显示屏上的橙色报警灯突然不停闪烁着,美国政府的专家们探测到一个关乎国家安全的预警信号。由于这个电子显示屏背后关联着世界上最大的一些金融机构,包括银行、政府、对冲基金、网络银团等。而橙色预警灯闪烁表明美国的对冲基金已经积聚在相同的金融资产上,此时,如果某个基金突然变现卖出,警示信号就会出现,而这种下挫价格的行为,迫使其他基金尾随卖出,加速资产价格下挫。很多基金可能在短短的30分钟内就会破产,对整个金融系统造成极大的威胁。但是,运用高性能计算机对海量的数据运行并处理后,可以对不可预知的风险进行“情景”预现,此时,金融监管部门及时介入从而可以安全平息此次潜在的金融风险事件。,Buchanan,M.(2009),Meltdownmodelling,Nature460,680-682.,Page.4,Farmer和Foley(2009)在Nature上提出:在IT高度发达的今天,人们会想当然地假定,奥巴马及其经济团队会采用高超的计算模型来指引美国走出危机。然而遗憾的是,他们并没有这样做。在两种流行的经济政策模型中,计量经济学模型假定历史会重演;动态随机一般均衡模型的世界太完美,以至于从本质上排除了危机因此,政策制订者往往依赖于经验和感觉,采用”屁股决定脑袋”的方式决策,Farmer,D.andD.Foley(2009),Theeconomyneedsagent-basedmodeling,Nature460,685-686.,Page.5,演进中的金融风险管理思考方式,“预测-应对”思考方式基于“历史会重演”、或者控制理论中的“各态遍历”假设如:VaR技术中历史波动性作为波动性预测的最佳估计,Monte-Carlo技术中根据历史数据估计参数、据此生成仿真数据、并形成预测,Page.6,演进中的金融风险管理思考方式,“情景-应对”思考方式“面向未来”的认为未来金融市场状态是由众多异质的、具有学习能力和演化特征的个体交互决定的,Page.7,演进中的金融风险管理思考方式,“情景-应对”思考方式伴随着人类科学前沿的不断拓展(modellingsurprise)、金融经济学中一些传统的思路(如“免疫”的思想)和计算实验金融学的发展,逐步形成了一种“情景-应对”型的风险管理思想,ModellingSurprise“Lookatthekindsofthingsthathavesurprisedusinthepastandthenmodelthekindsofthingsthatmaysurpriseusinthefuture.”,Page.8,演进中的金融风险管理思考方式,“情景-应对”型风险管理三部曲,设计开发出能反演出已有金融风险事件的人工金融市场平台,制订特定的风险/危机事件情景预案,更改行为、机制或导入新信息冲击,涌现式地衍生出新的风险/危机事件,情景1泡沫崩盘,情景2突然暴跌,情景3&%,预案1,预案2,预案3,人工金融市场平台,Page.9,基于“情景-应对”思考方式的集成研究,高杠杆率导致金融危机(反演)Thurner,Farmer&Geanakoplos(2010),Leveragecausesfattailsandclusteredvolatility,SSRNWorkingPaper.投资于证券市场的交易者噪音交易者:围绕资产的基本价值一个小的范围随机交易。基金:套利交易。当市场价格高于基本价值,买入;市场价格低基本价值,卖出。允许使用杠杆,即向银行借钱投资。银行:负责借钱给基金,对基金有杠杆率约束普通投资者:选择投资于于业绩表现好的基金或持有现金。资产:一只股票和现金。股票的总供给为N。价格决定:供需均衡。即噪音交易者的需求加投资基金的需求等于N。,Page.10,基于“情景-应对”思考方式的集成研究,高杠杆率导致金融危机(反演)Thurner,Farmer&Geanakoplos(2010),Leveragecausesfattailsandclusteredvolatility,SSRNWorkingPaper.,高杠杆率把市场的波动放大,导致市场加剧下跌,造成崩盘最高杠杆率的基金财富在下跌中急剧蒸发高杆杠杆率导致了市场的厚尾和波动聚集.,Page.11,基于“情景-应对”思考方式的集成研究,高杠杆率导致金融危机(反演)Thurner,Farmer&Geanakoplos(2010),Leveragecausesfattailsandclusteredvolatility,SSRNWorkingPaper.,平均动态杠杆率比固定最大杠杆率低,但动态的杠杆率约束比固定最大杠杆率更快的导致市场崩盘通过反演,提出政策建议:单个金融机构更严格的风险管控在市场崩盘时加剧了危机;监管机构不能仅依赖于单个金融机构(银行)的风险管控,必须关注系统性的风险管理,在危机发生时,需要引入协调机制来稳定市场.,Page.12,基于“情景-应对”思考方式的集成研究,Farmer等学者通过计算实验的手段,重现了本次金融危机发生情景,完成了第一步。该工作正在进展中:进一步研究如市场程序化的止损策略、各种对冲的衍生品对金融市场的冲击,衍生出新的金融市场事件,以采取更有效的监管和风险管控措施。天津大学团队与中国金融期货交易所也在“情景-应对”思想下开始了探索,其构建的Cybermarket在股指期货正式上市前,对股指期货可能存在的系统漏洞、程序化交易可能引发的风险事件做了”情景-应对“型的分析,Page.13,基于“情景-应对”思考方式的集成研究,Cybermarket项目背景存在的主要问题仿真交易市场与基础市场不能“连通”,不能影响现货价格投资者策略不足上市后的单市场与跨市场风险难以测度无可参考的历史数据,Page.14,基于“情景-应对”思考方式的集成研究,Cybermarket项目解决方案示意图,CCIS系统的作用:产生合理的“情景”,Page.15,基于“情景-应对”思考方式的集成研究,Cybermarket项目解决方案S1:在市场中嵌入异质策略虚拟投资者S2:利用异质策略虚拟投资者,构造出真实股指期货市场可能出现的不同情景,扫描市场漏洞,测试市场质量S3:构造包含虚拟现货、期货、期权等多市场情景,应用情景-应对思想,进行综合风险管理和政策仿真,Page.16,基于“情景-应对”思考方式的集成研究,虚拟人投资者系统(CCIS,CFFEXCyber-InvestorSystem),通过大量虚拟投资者的引入,应用“情景-应对“的思想,产生并分析了大量合理“情景”,据此提出了有效的交易所交易和监管制度改进建议。,基于“情景-应对”思考方式的集成研究,Page.17,Page.18,基于“情景-应对”思考方式的集成研究,ASPEN计划,ASPEN是由美国Sandia国家实验室开发的一套模拟美国经济运行的系统,该系统采用了Multi-Agent的思想进行建模,在模型中包含了家庭、企业、政府、银行、联邦储备局等多类Agent,这些Agent能够在劳动力市场、产品市场、债券市场和信贷市场上进行活动,衍生出各种不同的市场情景和极端风险事件,为国家的政策制定和风险管理提供有利的工具,Page.19,基于“情景-应对”思考方式的集成研究,EURACE计划EURACE是欧盟经济体共同投资开发中的研究欧盟宏观经济政策的仿真系统。其主要科学目标是建立一个以微观经济为基础的宏观经济分析框架,提供分析全球规则涌现的新视角。其主要的社会目标是通过仿真分析财政政策和货币政策的协调、外部环境震荡下稳定宏观经济的政策、鼓励科技变革和创新等经济政策的影响,以不断调整和改善经济政策在EURACE平台中,其市场的构建分为劳动力市场、资本产品市场和消费品市场,以及能源市场和信贷消费市场,并且这些市场之间是相互交互的,Page.20,“情景-应对”思考方式与计算实验金融,microscopicsimulationoffinancialmarket(M.Levy,H.LevyandSolomon,2000)AI-ECON:artificialintelligenceeconomics(Chen,2000)ACE/ACF:agent-basedcomputationalfinance(Lebaron,2002)ABS:adaptivebeliefsystemstomodelfinancialmarkets(Hommes,2002)AMH:adaptivemarketshypothesis(Lo,2004)HAM:heterogeneousagentmodelsinfinance(Hommes,2006)computationalintelligenceinfinance(Chen,2007)meltdownmodeling(Buchanan,2009).,Page.21,“情景-应对”思考方式与计算实验金融,计算实验金融(Agent-basedComputationalFinance,ACF),是将金融市场视为包含多个异质参与主体的复杂系统,运用信息和计算技术来模拟给定的市场交易结构、市场微观层次Agent的行为,进而揭示由此“涌现”出来的金融市场(如股票市场、外汇市场、期货市场等)动态特性及其成因的一个金融研究领域,Page.22,计算实验金融中的建模方法与关键技术,按照Dawid和Fagiolo(2008)提出的观点,异质AGENT的交互结构、个体行为构成了进行计算实验金融研究的建模基础问题同时,这种模型的特点使我们能够不拘泥于传统模型的限制而更多地研究系统的开放性动态规律这就使得计算实验模型可以形成潜在的“政策试验床”,因为比起抽象的数学模型来,对于将经济结构细节更直接表达出来的模型,决策者会感觉到更加熟悉和亲切,Page.23,计算实验金融中的建模方法与关键技术,计算实验模型的构成,价格形成机制建模Agent个体行为建模市场信息结构建模,Page.24,计算实验金融中的建模方法与关键技术,价格形成机制建模方法LeBaron(2006)指出,在构建金融市场的计算实验平台时,最大的困难也许就是构建实验环境的本身,即市场中的价格形成机制的设计。从已有的文献中可以看出,目前的人工金融市场中关于价格形成机制的设计,从思想上大体上可以分为4类,Page.25,计算实验金融中的建模方法与关键技术,价格形成机制建模方法超额需求函数模型如:Day和Huang(1990)、Chiarella(1992)、Lux(1995,1999)随机碰撞模型如:Beltratti和Margarita(1993)供需均衡模型如:Arthur等(1997)、Brock和Hommes(1998)、Chiarella和He(2002)、Zhang和Zhang(2007)真实市场模型如:Gode和Sunder(1993,1997)、Chiarella和Iori(2002)、Farmer等(2005)、LeBaron等(2007)、Chiarella等(2009)、Li和Zhang等(2010),Page.26,计算实验金融中的建模方法与关键技术,Agent个体行为建模方法计算建模的工作除了对价格形成机制建模以外,另一项重要的工作就是对Agent的个体行为建模根据不同的“智能”程度,目前相关的文献大致可以3类。,Page.27,计算实验金融中的建模方法与关键技术,Agent个体行为建模方法零智能(ZI)类模型如:Gode和Sunder(1993,1997)、Cliff(1997)、Farmer等(2005)、Tubaro(2009)简单策略类模型如:Brock和Hommes(1998)、Chiarella和He(2003)、Chiarella和Iori(2002)、Zhang等(2006)、Li和Zhang等(2010)复杂演化学习类模型如:Arthur等(1997)、Chen和Yeh(2001)、LeBaron和Yamamoto(2007)、Zhang和Zhang(2007),Page.28,计算实验金融中的建模方法与关键技术,市场信息结构建模方法市场的信息结构由Agent的交互网络模式所决定,不同的信息结构对信息的传播方式和效率都会产生影响。根据Agent的交互模式,可以将信息结构建模方法分为3类。,Page.29,计算实验金融中的建模方法与关键技术,市场信息结构建模方法个体Agent不存在直接交互的网络模型如:SFI-ASM(Arthur等,1997),Brock和Hommes(1998),Chen和Yeh(2001)扩散传播模型如:Kirman(1993)、Bak等(1997)、Lux和Marchesi(1999)、Cont和Bouchaud(2000)固定模式的交互网络模型如:Epstein和Axtell(1996)、Wilhite(2001)、Hein等(2008),Page.30,计算实验金融中的建模方法与关键技术,Dawid和Fagiolo(2008)在JEBOspecialissueonAgent-basedmodelsforeconomicpolicydesign的序言中提到:虽然计算实验模型在经济政策分析方面已经展现出非常令人鼓舞的潜力,.,该方法要跻身经济政策分析的”标准工具“之列,还需解决2个关键技术:模型校准和鲁棒性检验Ball(2006)在Nature也提出,这个领域目前处在”研究质量非常不均衡“的状态。在关键技术方面的重要突破,有助于该领域形成更加统一的研究范式。,Page.31,计算实验金融中的建模方法与关键技术,关键技术1:模型校准Bianchi、Cirillo、Gallegati和Vagliasindi(2008)总结了计算实验金融模型校准的三种方法:描述性输出校准。即将人工金融系统生成的数据与实际金融系统的数据进行比较,考察其是否具有相同的统计特征。预测输出校准。考察人工金融系统的预测是否与未来真实系统的发展一致。这种方法通常需要较长的时间,需要用未来的事实证明。输入校准。考察人工金融系统具有与真实系统相同的基本结构、行为和制度条件时,这也称为事前校准。,Page.32,计算实验金融中的建模方法与关键技术,关键技术1:模型校准,对研究金融脆弱性的CATS模型(complexadaptivetrivialsystem,JEBO2003,2005)的校准BCGV运用了第1、3种方法,进行校准,CATS产生与真实系统数据(1996年-2001年)的特征较为一致分别对系统中企业的资本、贷款及增长率数据进行比较红线代表真实系统数据的特征蓝线代表计算实验系统数据的特征,Page.33,计算实验金融中的建模方法与关键技术,关键技术1:模型校准,LiYuelei,ZhangWei,ZhangXiaotao,ZhangYongjieandXiongXiong.CalibrationofAgent-basedContinuousDoubleAuctionStockMarketbyScalingAnalysis.WorkingPaper.2010.,Page.34,计算实验金融中的建模方法与关键技术,关键技术1:模型校准LeBaron(2006)则提出了另一个分类方法:考察计算实验模型是否可以复制出真实市场中的尖峰厚尾、波动聚集等一些异象特征(stylefacts),通过将真实市场中的一些数据导入到计算实验模型中,作为计算实验模型的初始状态,然后观察模型的演化特征并与真实市场进行比较在建立计算实验模型时首先通过计量方法,利用真实市场数据回归或拟合出计算实验模型中的一些重要参数值,然后基于这些参数来进行计算,通过对其参数的估计进行了一系列有效的仿真实验。,Page.35,计算实验金融中的建模方法与关键技术,关键技术2:鲁棒性检验市场环境参数鲁棒性检验LeBaron、Arthur和Palmer(1999),Huang(2010),喻颖和张维(2005),陈莹,袁建辉,李心丹和肖斌卿(2010)模型结构鲁棒性检验Noe、Rebello和Wang(2003),BenceToth和EnricoScalas(2007),Reiner(2010)基于大规模系统的agent数量鲁棒性检验Egenteretal.(1999),Alfarano和Milakovic(2009),Lux(2009)然而在目前对大规模agent数量的检验受计算能力的约束较多,我们正在进行multi-agent并行计算平台的开发,专门用于大规模异质agent交互建模,Page.36,计算实验金融中的建模方法与关键技术,关键技术2:鲁棒性检验,Noe、Rebello和Wang(2003)研究了交易机制变化对基于遗传算法的agent证券选择的影响
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诊室患者安全管理制度
- 诊所新风设备管理制度
- 试件标准养护管理制度
- 财务签字审批管理制度
- 财政扶贫项目管理制度
- 货品安全配送管理制度
- 货物运输变更管理制度
- 货车司机仓库管理制度
- 物资采购沟通协议书范本
- 护理心理学案例分析 课件
- 中建二测2025题库
- 天津公务员考试真题2024
- 重点人口管理工作规定
- 肾挫伤患者护理查房
- 山东省烟台市、龙口市2025届中考生物考试模拟冲刺卷含解析
- 2024-2025学年安徽省芜湖无为市六年级下学期小升初招生数学试卷含解析
- 东方经(已经排好版)
- DB14-T 3225-2025 煤矸石生态回填环境保护技术规范
- 福建省厦门市2022-2023学年高二下学期质量检测生物试题(解析版)
- 管道直饮水项目初步方案
- 2025年燃气轮机值班员职业技能知识考试题库
评论
0/150
提交评论