




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本讲整合,答案:三维形式的柯西不等式一般形式的柯西不等式乱序和顺序和向量形式三角不等式,专题一,专题二,专题一:柯西不等式的应用1.柯西不等式的一般形式为(a1b1+a2b2+anbn)2,其中ai,biR(i=1,2,n).该不等式的形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式的证明问题迎刃而解,也可以用来解决最值问题.2.利用柯西不等式证明其他不等式的关键是构造两组数,并向着柯西不等式的形式进行转化,运用时要注意体会拼凑和变形技巧.3.利用柯西不等式证明不等式,特别是求最值时要注意等号是否成立.,专题一,专题二,专题一,专题二,变式训练1已知实数a,b,c满足a+2b+c=1,a2+b2+c2=1,求证c1.证明:因为a+2b+c=1,a2+b2+c2=1,所以a+2b=1-c,a2+b2=1-c2.由柯西不等式可得(12+22)(a2+b2)(a+2b)2,即5(1-c2)(1-c)2,专题一,专题二,例2设a,b,c为正实数,且a+2b+3c=13,专题一,专题二,变式训练2求实数x,y的值,使(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.解:由柯西不等式,得(12+22+12)(y-1)2+(3-x-y)2+(2x+y-6)21(y-1)+2(3-x-y)+1(2x+y-6)2=1,专题一,专题二,专题二:排序不等式的应用1.在利用排序不等式证明相关不等式时,首先考虑构造出两个合适的有序数组,并能根据需要进行恰当地组合,这需要结合题目的已知条件及待证不等式的结构特点进行合理选择.2.根据排序不等式的特点,与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往有“化繁为简”的效果.3.利用排序不等式求最值时,也要关注等号成立的条件,不能忽略.,专题一,专题二,例3设a,b,cR+,利用排序不等式证明:分析:假定a,b,c的大小关系,构造数组a5b5c5,进行证明.,专题一,专题二,例4设a1,a2,a3,a4,a5是互不相同的正整数,分析:构造数组b1,b2,b3,b4,b5和1,利用排序不等式求解.,解:设b1,b2,b3,b4,b5是a1,a2,a3,a4,a5的一个排列,且b1b2b3b4b5.则b11,b22,b33,b44,b55.,专题一,专题二,变式训练3设a1,a2,an为正数,且a1+a2+an=5,5,1,2,3,4,考点:柯西不等式的应用1.(2014陕西高考)设a,b,m,nR,且a2+b2=5,ma+nb=5,则的最小值为.解析:由柯西不等式,得(a2+b2)(m2+n2)(am+bn)2,即5(m2+n2)25,m2+n25,当且仅当an=bm时,等号成立.,1,2,3,4,2.(2013湖南高考)已知a,b,cR,a+2b+3c=6,则a2+4b2+9c2的最小值为.解析:由柯西不等式,得(12+12+12)(a2+4b2+9c2)(a+2b+3c)2,即a2+4b2+9c212,当a=2b=3c=2时,等号成立,所以a2+4b2+9c2的最小值为12.答案:12,1,2,3,4,3.(2017江苏高考)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明:ac+bd8.证明:由柯西不等式可得:(ac+bd)2(a2+b2)(c2+d2).因为a2+b2=4,c2+d2=16,所以(ac+b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于蚯蚓的研究报告
- 中国生物制造行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 2025年 无锡立信高等职业技术学校招聘考试笔试试题附答案
- 中国薄膜电容器行业市场运行现状及投资规划建议报告
- 2024-2030年中国功能性甜味剂行业市场发展监测及投资潜力预测报告
- 2025年中国沉香木行业市场评估分析及发展前景调研战略研究报告
- 2025年中国椰子制品行业发展全景监测及投资方向研究报告
- 2025年中国脉冲继电器行业市场运行现状及未来发展预测报告
- 2025年中国剥离纸行业市场发展前景及发展趋势与投资战略研究报告
- 柔性防水腻子和普通腻子的检测报告
- 众包物流模式下的资源整合与分配
- 四川省成都市成华区2023-2024学年七年级上学期期末数学试题(含答案)
- 慢性硬膜下血肿护理要点大揭秘
- “微”力量微博营销
- 2022-2023学年山东省菏泽市成武县人教版四年级下册期末考试数学试卷(解析版)
- 2023建筑业10项新技术
- 预防医学英文版课件:Occupational hazards injury
- 无人船自主航行设计方案
- NBT10497-2021 水电工程水库塌岸与滑坡治理技术规程
- 陕西省铜川市初中语文八年级期末高分试卷详细答案和解析
- 《非物质文化遗产数字化保护 数字资源采集和著录 第9部分:传统技艺》
评论
0/150
提交评论