2017~2018 Final Exam 线性代数英文试题_第1页
2017~2018 Final Exam 线性代数英文试题_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Student Number: Your Name: 20162017 Fall SemesterUNIVERSITY OF SCIENCE TECHNOLOGY BEIJINGLinear Algebra Final ExamTime: 09:00-11:30 A.M. Full Mark: 100 Your Mark: Notation: Please fill out and sign the front of your exam booklet.No books or electronic devices allowed. No using any notes or formulas! No cheating!You may keep this paper. Solutions will be posted on the course website after the exam.Please do not answer the following problem until we give the signal. 1. (20 points) Let A = 221 6 63-3 011040 13104 Find bases of the following vector spaces and state their dimensions.(a)The column space of A.(b)The row space of A.(c)The null space of A.(d)The orthogonal complement of the column space of A.2. (15 points) Let A = 4-130(a)Compute Ak for all integers k0. Write the answer as explicitly as you can, in the form of a 22 -matrix with entries depending on k.(b)Solve the initial value problem x(t) = Ax(t) with x(0) =103. (10 points)(a) Let Pn be the vector space of polynomials of degree less than or equal to n. Let T be the linear transformation from P3 to P4defined byT(p)(t)=p(2) + (t 2)p(t)+ t3p(5t)(You are not required to show that T is linear.) Find the matrix of T with respect to the B 3 = 1, t, t2, t3 of P3 and the B 4 = 1,t,t2,t3,t4 of. P4(b) Find the equation y = ax + b of the least-squares line that best fits the data points (1,2), (2,2), and (3,4).4. (20 points) Let A= 23101021(a)Find the singular values of A.(b)Find two unit vectors in R4 that are orthogonal to each other and to the columns of A.(c)Find a singular value decomposition of A.5. (15 points) Prove the following assertions. All matrices in this problem are real nn -matrices.(a)If matrices A and B are similar, then they have the same rank.(b)Suppose the matrix A satisfies the following conditions: A is symmetric, A2 = A, and rank(A) = 1. Then there exists a unit vector u in Rn with the property that A = uuT. (Hint: what does the condition A2 = A tell you about the eigenvalues of A? Also use the result of part (a).)6. (20 points) True or false? Prove your assertions! All matrices in this problem are real.(a)If A is an m x n-matrix, then A and ATA have the same null space.(b)The formula (f,g) =01(ft+ ft)(gt+ gt)dt defines an inner product on the space of continuously differentiable functions on the interval 0,1. (A function f is called continuously differentiable if f exists and is continuous.)(c)If A is a positive definite symmetric nn-matrix, then there exists a non-zero vector x in Rn with t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论