




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3三角函数的诱导公式,第1课时诱导公式二、三、四,一,二,三,一、诱导公式二【问题思考】1.观察单位圆,回答下列问题:(1)角与角+的终边有什么关系?(2)角与角+的终边与单位圆的交点P,P1有什么对称关系?(3)在(2)中,点P,P1的坐标有什么关系?提示:(1)在一条直线上,方向相反;(2)关于原点对称;(3)横、纵坐标都互为相反数.,一,二,三,2.填空:(1)角+与角的终边关于原点对称(如图所示).(2)诱导公式二:sin(+)=-sin,cos(+)=-cos,tan(+)=tan.,一,二,三,二、诱导公式三【问题思考】1.观察单位圆,回答下列问题:(1)角与角-的终边有什么关系?(2)角与角-的终边与单位圆的交点P,P1有什么对称关系?(3)在(2)中,点P,P1的坐标有什么关系?提示:(1)关于x轴对称;(2)关于x轴对称;(3)横坐标相等,纵坐标互为相反数.,一,二,三,2.填空:(1)角-与角的终边关于x轴对称(如图所示).(2)诱导公式三:sin(-)=-sin,cos(-)=cos,tan(-)=-tan.,一,二,三,三、诱导公式四【问题思考】1.观察单位圆,回答下列问题:(1)角与角-的终边有什么关系?(2)角与角-的终边与单位圆的交点P,P1有什么对称关系?(3)在(2)中,点P,P1的坐标有什么关系?提示:(1)关于y轴对称;(2)关于y轴对称;(3)横坐标互为相反数、纵坐标相等.,一,二,三,2.填空:(1)角-与角的终边关于y轴对称(如图所示).(2)诱导公式四:sin(-)=sin,cos(-)=-cos,tan(-)=-tan.,一,二,三,一,二,三,思考辨析判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)三角函数诱导公式中的角应为锐角.()(2)存在角,使sin(+)=sin,cos(-)=cos.()(3)当是第三象限角时,tan(-)=tan.()(4)tan(-)=tan.()(5)sin(2-)=sin.()答案:(1)(2)(3)(4)(5),探究一,探究二,探究三,【例1】(1)求sin585cos1290+cos(-30)sin210+tan135的值;(2)已知cos(-55)=-,且为第四象限角,求sin(+125)的值.分析(1)利用诱导公式将负角化为正角,进而化为锐角进行求值;(2)寻求-55与+125之间的关系,利用诱导公式进行化简.,探究一,探究二,探究三,解:(1)sin585cos1290+cos(-30)sin210+tan135=sin(360+225)cos(3360+210)+cos30sin210+tan(180-45)=sin225cos210+cos30sin210-tan45=sin(180+45)cos(180+30)+cos30sin(180+30)-tan45=sin45cos30-cos30sin30-tan45,探究一,探究二,探究三,探究一,探究二,探究三,反思感悟1.利用诱导公式解决给角求值问题的基本步骤:2.利用诱导公式解决给值求值问题的策略:(1)弄清楚已知条件与所求式中角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.,探究一,探究二,探究三,探究一,探究二,探究三,分析充分利用所学的四个诱导公式对角进行转化,并结合同角三角函数关系式进行化简.,探究一,探究二,探究三,反思感悟利用诱导公式一四化简应注意的问题:(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的.(2)化简时函数名不发生改变,但一定要注意函数的符号有没有改变.(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.,探究一,探究二,探究三,探究一,探究二,探究三,分析观察被证式两端,左繁右简,可以从左端入手,利用诱导公式进行化简,逐步地推向右边.,探究一,探究二,探究三,反思感悟关于三角恒等式的证明,常用方法:(1)从一边开始,证得它等于另一边,一般由繁到简;(2)左右归一法,即证明左右两边都等于同一个式子.无论用哪种方法都要针对题设与结论间的差异,有针对性地变形,以消除其差异.,探究一,探究二,探究三,1,2,3,4,5,解析:tan(-600)=-tan600=-tan(360+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业废水处理与节能环保的综合策略
- 工业无线通信中的机器学习技术
- 工业大数据的采集与处理技术
- 工业机器人技术及其在制造业中的应用探讨
- 工业污染控制与智能环境监测的融合
- 工业生产中的资源循环利用技术
- 工业绿色生产技术创新与发展趋势
- 工业污染防治的国际经验与启示
- 工业涂料生产中的环保技术及措施
- 工业设计中的创新方法与技术应用
- 浙江省高等学校毕业生登记表
- 灌注桩后注浆施工记录
- 《我和我的同学》的主题班会
- 高中生知识抢答竞赛题
- 抖音直播知识考试题库200题(含答案)
- 廉洁教育班会(共37张PPT)
- 2023高效制冷机房系统应用技术规程
- 通信电子线路创新训练教程部分习题答案
- 前沿科学与创新学习通超星课后章节答案期末考试题库2023年
- 汽车维修服务清单
- 2022年天水市武山县社区工作者招聘考试试题
评论
0/150
提交评论