




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学建模,MathematicalModelling,1,第四讲椅子放稳模型,在日常生活中,将一张四条腿一样长的椅子放在不平的地面上,通常只有三只脚着地,而使椅子不平稳。但我们的祖先为什么把都把椅子做成四脚连线呈正方形,矩形或等腰梯形。请你通过建立模型解释这一现象。,2,一、问题重述在日常生活中,将一张四条腿一样长的椅子放在不平的地面上,通常只有三只脚着地,而使椅子不平稳。我们通过建立模型分别解决以下问题:1解释只需适当将椅子“挪动”几次就可使椅子放稳这一现象;2如果椅子的四只脚构成一个平行四边形,通过适当的“挪动”能够放稳吗?3椅子的四只脚满足什么条件通过挪动就可使椅子放稳?最后对模型进行了分析和推广。,3,二、模型假设,为使问题简化,便于解决,我们作如下合理假设:1椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点,四脚的连线呈正方形;2地面凹凸坡面是连续变化的,沿任何方向都不会出现间断(如没有象台阶那样的情况),即地面可看作数学上的连续曲面;3相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地;4挪动仅只是绕一个定点的旋转。,4,假设1显然是合理的。否则即便放在平面上也不会是椅子放稳。假设2相当于给出了椅子能够放稳的必要条件,因为如果地面高度不连续(比如在有台阶或裂缝的地方)是无法使椅子四只脚同时着地。,假设3是要排除地面上与椅脚间距和椅子腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使连续变化的),将使椅子三只脚也无法同时着地。,5,首先,根据假设1,椅脚连线呈正方形,而正方形以中心为对称,即正方形绕中心的旋转可以表示椅子位置的改变,于是可以用旋转角度这一变量表示椅子的位置。如图1,椅脚连线为正方形ABCD,在图1所示的坐标系下对角线AC与ox轴重合,椅子绕中心o旋转角度后,正方形转至的位置,如图2所示,即对角线AC与ox轴的夹角表示了椅子的位置。,正方形ABCD绕O点旋转,三、建模与分析,6,其次,要把椅子着地用数学符号表示出来。如果用某个变量表示椅脚与地面的竖值距离,那么当这个距离为零时就是椅脚着地了。椅子在不同的位置时,椅脚与地面的距离不尽相同,所以这个距离是变量的函数。,三、建模与分析,7,虽然椅子有四只脚,因而有四个距离,即每一个椅脚和地面都有一个距离。但由假设3以及正方形关于中心的对成性,只要设两个距离就可以了。设A、C两脚与地面的距离之和为f(),B、D两脚与地面的距离之和为g(),显然f()、g()0。由假设2知f()、g()都是连续函数。在由假设3知,椅子在任何位置上至少有三只脚着地,所以对于任意的,f()、g()中至少有一个为零。当=0时,不妨设f()0、g()=0。另一方面,由对称性知道,旋转/2的角度后,相当于AC和BD互换一个位置.故有f(/2)=0,g(/2)0,这样,改变椅子位置使四只脚同时着地,就归结为证明如下数学命题。,8,命题1已知f()和g()是的连续函数,对任意的,有f()g()=0,且f(0)0、g(0)=0,、,则存在,使得f(0)=g(0)=0.,可以看到,引入变量和函数f()、g(),就把模型的假设条件和椅脚同时着地的结论用简单而精确的数学语言表示出来,从而构成了这个实际问题的数学模型。,9,四、模型求解,令h()=f()g(),则h(0)0和h(/2)0、g(0)=0,f()=0、g()0,则存在0,,使得f(0)=g(0)=0。,13,3.模型的进一步分析与推广由于正方形和矩形的任意一个顶点通过适当的旋转,可到达每一个顶点,即就是说正方形和矩形的四个顶点绕其中心旋转一周所得轨迹是同一个圆周。这也就是正方形和矩形的四个顶点共圆,可通过适当的旋转将椅子放平稳。那么,椅子四脚连线所构成的四边形是圆内接四边形,是否一定可通过适当的旋转可将椅子放平稳?反之,通过适当的旋转可将椅子放平稳,椅子四脚连线是否一定是圆内接四边形?,14,我们先看一个实例,设地面为一个足够大的球面部分,其方程为:,15,16,椅子四只脚构成一菱形ABCD,对角线的长度分别为AC=8,BD=6。根据球面的特点,要使得菱形ABCD的顶点至少有三个在球面上,则其三个顶点必在同一个圆上。不妨取菱形ABCD所在的平面与球面的截痕及菱形,在xoy面上投影图如示图,其圆周的半径为,17,于是D点到底面即球面的距离为,这说明通过旋转永远也不可能将椅子放稳。即就是说椅子四脚连线所构成的四边形不是园内接四边形,通过旋转不可能将椅子放稳。,下面我们来讨论另一个问题。众所周知,我们日常生活中所遇到的椅子大都是四脚连线呈等腰梯形,那么,对这样的椅子甚至四脚连线为任意园内接四边形的椅子是否也能在不平的平面上放稳?为解决此问题我们重新建立模型。,18,模型假设1椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。2地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。3相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。5挪动仅只是旋转。,19,模型建立将椅子放在地面任何一个位置,并使至少三只脚同时着地。这时以椅子四脚共圆的圆心O为原点,四脚连线所在的平面为xoy坐标面,并使椅脚之一(如椅脚A)在ox轴的正半轴上建立平面坐标系图.,由假设4,椅子四脚A、B、C、D共圆,设其半径为R,则这四点必在圆周x2+y2=R2上。不妨设OB、OC、OD分别与ox轴的正向夹角分别为1、2、3.这三个夹角应满足条件01230,1、2、3是满足不等式01232的任意常数,则一定存在00,2,使当=0时,四点共面。,24,证四点共面的充要条件是向量的混合积。不妨设,即,25,又因为()是以2的连续函数,从而对任意的常数a都有,26,定理1说明,对四脚共圆的椅子,在不平的地面上,总可以经适当的旋转把椅子放稳。,27,放稳椅子的充要条件前面我们对四脚共圆的椅子进行了讨论,并建立了数学模型。那么四脚不共圆的椅子是否也能在一般不平面的地面上放稳呢?回答是否定的,其反例如下:例:设椅子的四脚不共圆,地面为半径充分大的球面,则这样的椅子在相应的地面上总放不稳。证:反证法假设在这样的地面上存在四点A、B、C、D使椅子的四脚在这四点同时着地,则四点必共面,即在同一平面上。从而,这四点必在此平面与球面的交线上,也就是着四点必共圆。这与椅子四脚不共圆矛盾。这矛盾说明假设错而例中结论真。,28,此例说明:当椅子四条腿一样长但四脚不共圆时,无论怎么放,也不能在球面型的地面上放稳。而由前面的数学模型及讨论说明,当椅子四条腿一样长且四脚共圆时,对任意的连续平坦地面,无论在何处,都可以经过适当的旋转把椅子放稳。这样我们就证明了下面结论:定理2在不平的地面上把椅子放稳的充要条件是椅子四脚共圆。,29,模型的应用椅子问题虽然是日常生活中一件非常普通的问题,但在上述的模型中所给出有关椅子的结论对于实践具有普遍的指导意义。通常,在制作椅子时,我们事先并不知道要把椅子放在什么样的地面上,因此,我们无法也不可能对地面提出任何要求,但为了保证椅子将来能在任何连续平坦的地面上放稳,我们可对椅子的设计提出一定的要求,这个要求就是:必须且只需把椅子做成四脚连线呈圆内接四边形的形式。这也正好说明了我们的祖先为什么把都把椅子做成四脚连线呈正方形、矩形或等腰梯形,其原因就是他们都是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢水快速测温项目可行性研究报告
- 废水回收资源项目可行性研究报告
- 2026年高考语文总复习文言文专题-教师版-古代文化常识(知识清单)
- 贸易合同中常见风险提示
- 医疗健康市场发展前景
- 北疆就业网就业协议书5篇
- 楼房加层建筑施工承建合同3篇
- 数字支付价格创新与电子商务深度融合-洞察及研究
- 11.5机械效率 同步练习 (含解析)2025-2026学年苏科版(2024)物理九年级上册
- 部门安全知识培训计划课件
- 2025-2026学年人教版(2024)初中数学七年级上册教学计划及进度表
- 2023年度中国人民抗日战争纪念馆招聘4人笔试备考题库及答案解析
- 铝合金门窗 工程监理实施细则
- 北京京剧院劳动合同制职工招考聘用模拟卷含答案
- 风电工程电气监理细则资料
- 铁路工程量清单指南
- 化妆品进货验收台帐
- 工程经济学ppt全套教学课件
- 附件4:医院血透室医疗质量检查表
- 精选艾森克人格问卷测试成人版和少年版计分方式
- WS T 310.2-2016医院消毒供应中心第2部分:清洗消毒及灭菌技术操作规范1
评论
0/150
提交评论