




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,空间点、直线、平面之间的位置关系,平面,构成图形的基本元素,点、线、面,点无大小,线无粗细,面无厚薄,点,直线,平面,可无限延伸的,平面是可无限延展的,平面的符号表示,1.希腊字母:平面,平面,平面,平面的表示,平面的表示,两个相交平面的画法和表示,平面和平面相交于一条直线a,被遮住的部分画虚线,平面平面=直线a,平面的表示,直线和平面都可以看成点的集合,“点P在直线l上”,“点A在平面内”,用集合符号表示点与直线、点与平面、直线与平面的关系,“点P在直线l外”,“点A在平面外”,直线l在平面内,或者说平面经过直线l,直线l在平面外.,平面的基本性质,公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.,思考1:如何让一条直线在一个平面内?,作用:为判断直线与平面的位置关系提供依据,集合符号表示,平面经过这条直线,平面的基本性质,公理2过不在一条直线上的三点,有且只有一个平面.,思考2:经过两点可以确定一条直线,那么经过几个点可以确定一个平面呢?,作用:判断几个点共面或直线在同一个平面内,集合符号表示,“不共线的三点确定一个平面”,已知A、B、C三点不共线,则存在惟一平面,使得A、B、C,平面的基本性质,思考3:如果两个平面有一个公共点,那么还会有其它公共点吗?如果有这些公共点有什么特征?,公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.,作用:判断两个平面位置关系的基本依据,例题,例1如图,用符号表示下列图形中点、直线、平面之间的位置关系.,解:1)A,B,=l,a=A,a=B,2)a,b,=l,al=P,bl=P,ab=P,空间中直线与直线之间的位置关系,两条直线的位置关系,思考1:同一平面内两条直线有几种位置关系?空间中的两条直线呢?,C,1)教室内日光灯管所在直线与黑板左右两侧所在直线的位置关系如何?,2)天安门广场上,旗杆所在直线与长安街所在直线的位置关系如何?,两条直线的位置关系,1.异面直线的定义:,不同在任何一个平面内的两条直线叫做异面直线。,1)异面直线既不平行也不相交,2)定义中“任何”是指两条直线永远不具备确定平面的条件,即是不可能找到一个平面同时包含这两条直线;不能认为分别在两个平面内的两条直线叫异面直线。,两条直线的位置关系,A.空间中既不平行又不相交的两条直线;B.平面内的一条直线和这平面外的一条直线;C.分别在不同平面内的两条直线;D.不在同一个平面内的两条直线;E.不同在任何一个平面内的两条直线.,关于异面直线的定义,你认为下列哪个说法最合适?,问题,a与b是相交直线,a与b是平行直线,a与b是异面直线,它们可能异面,可能相交,也可能平行。,它们可能异面,可能相交,也可能平行。,也不能认为不在同一平面内的两条直线叫异面直线。,说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.,如图:,(1),(3),(2),3)异面直线的画法,4)异面直线的判定方法:,不同在任何一个平面内。,既不相交也不平行的直线。,连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。,按平面基本性质分,同在一个平面内,相交直线,平行直线,不同在任何一个平面内:,异面直线,有一个公共点:,按公共点个数分,相交直线,无公共点,平行直线,异面直线,2、空间中直线与直线之间的位置关系,如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有多少对?,探究,直线EF和直线HG,直线AB和直线CD,直线AB和直线HG,答:3对,平行直线,如图,在长方体ABCDABCD中,BBAA,DDAA,那么BB与DD平行吗?,观察,答:平行,平行直线,公理4平行于同一直线的两条直线互相平行.,空间中的平行线具有传递性,如果a/b,b/c,那么a/c,三条平行线共面,三条平行线不共面,平行直线,已知三条直线两两平行,任取两条直线能确定一个平面,问这三条直线能确定几个平面?,三条平行线共面,三条平行线不共面,问题,平行直线,例2如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.,F,G,D,A,E,B,C,H,在上例中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?,探究,答:四边形EFGH是菱形,等角定理,在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”空间中,结论是否仍然成立?,思考1,如图,四棱柱ABCD-ABCD的底面是平行四边形,ADC与ADC,ADC与BAD的两边分别对应平行,这两组角的大小关系如何?,思考2:,ADC=ADC,ADC+BAD=1800,等角定理,定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.,异面直线所成的角,思考,在同一平面内两条相交直线形成四个角,常取较小的一组角来度量这两条直线的位置关系,这个角叫做两条直线的夹角.在空间中怎样度量两条异面直线的位置关系呢?,a,平面内两条相交直线,空间中两条异面直线,异面直线所成的角,已知两条异面直线a,b,经过空间任一点O作直线,把与所成的锐角(或直角)叫做异面直线a与b所成的角,异面直线所成的角,我们规定两条平行直线的夹角为0,那么两条异面直线所成的角的取值范围是什么?,如果两条异面直线所成角为900,那么这两条直线垂直.,探究,记直线a垂直于b为:ab,异面直线所成的角,探究,(1)在长方体中,有没有两条棱所在的直线是相互垂直的异面直线?,(2)如果两条平行直线中的一条与某一条直线垂直,那么,另一条直线是否也与这条直线垂直?,(3)垂直于同一条直线的两条直线是否平行?,垂直,异面直线所成的角,例3已知正方体,(1)哪些棱所在直线与直线是异面直线?,(2)直线和的夹角是多少?,(3)哪些棱所在的直线与直线垂直?,解:(1)由异面直线的定义可知,,棱所在的直线分别与直线是异面直线,(2)由可知,,为,异面直线与的夹角,所以与的夹角为,在如图所示的长方体中,AB=,且AA1=1,求直线BA1和CD所成角的度数.,30O,练习1,空间中直线与平面之间的位置关系,直线与平面,直线和平面的位置关系有且只有三种,(1)直线在平面内,有无数个公共点,a,记为:a,直线与平面,(2)直线与平面相交,有且只有一个公共点,a,记为:a=A,A,直线与平面,(3)直线与平面平行,没有公共点,a,记为:a/,直线与平面,直线与平面相交或平行的情况统称为直线在平面外,记为:a,a,a/,a,a=A,A,或,主要内容,直线与平面的位置关系直线在平面内直线与平面相交直线与平面平行,直线在平面外,直线与平面,例1.下列命题中正确的个数是()1)若直线l上有无数个点不在平面内,则l/2)若直线l与平面平行,则l与平面内的任意一条直线都平行3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行4)若直线l与平面平行,则l与平面内的任意一条直线都没有公共点.,(A)0(B)1(C)2(D)3,B,主要内容,直线与平面的位置关系直线在平面内直线与平面相交直线与平面平行,直线在平面外,平面与平面之间的位置关系,平面与平面之间的位置关系,思考,(1)拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?,两个平面的位置关系,两个平面的位置关系有且只有两种两个平面平行没有公共点两个平面相交有一条公共直线,两个平面平行或相交的画法及表示,/,m,=m,已知平面,直线a、b,且/,a,b,则直线a与直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025办公用品耗材购销合同范本
- 2025国家能源集团煤炭经营分公司高校毕业生招聘(第二批)人员(已结束)模拟试卷及答案详解(必刷)
- 2025年山东师范大学公开招聘人员(23名)考前自测高频考点模拟试题及完整答案详解1套
- 2025江西赣南医科大学高层次人才招聘180人模拟试卷附答案详解
- 2025江苏连云港市灌南县招聘事业单位人员43人模拟试卷附答案详解
- 2025签订汽车销售合同的注意事项
- 2025江苏金灌投资发展集团有限公司、灌南城市发展集团有限公司招聘高层次人才10人考前自测高频考点模拟试题及一套答案详解
- 2025内蒙古恒正实业集团有限公司招聘10人考前自测高频考点模拟试题及参考答案详解一套
- 2025年无固定期限合同内容如何确定
- 2025年湖南娄底市城市发展控股集团有限公司外派人员选聘模拟试卷及答案详解(名校卷)
- 国家公务员行测数量关系(数字推理)模拟试卷1(共253题)
- 北师大版四年级数学上册第五单元《方向与位置》(大单元教学设计)
- (高清版)JTG 5211-2024 农村公路技术状况评定标准
- 人教精通版6年级上下册重点单词和句型默写
- 《民航客舱设备操作与管理》课件-项目二 客舱服务设备
- 大隐静脉消融术手术
- 三D打印公开课
- 生而逢盛世青年当有为 (模板)
- 养殖险的理赔培训课件
- 威士忌培训课件
- DB51T 3149-2023 四川省电力用户受电设施及配电设施运维检修服务管理规范
评论
0/150
提交评论