高一数学(等比数列的前n项和(第1课时))_第1页
高一数学(等比数列的前n项和(第1课时))_第2页
高一数学(等比数列的前n项和(第1课时))_第3页
高一数学(等比数列的前n项和(第1课时))_第4页
高一数学(等比数列的前n项和(第1课时))_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5等比数列的前n项和,第一课时,高一数学必修五第二章数列,国际象棋起源于古代印度,据传,国王要奖赏国际象棋的发明者,问他有什么要求,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,在第2个格子里放上2颗麦粒,在第3个格子里放上4颗麦粒,在第4个格子里放上8颗麦粒,依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.”这是一个什么数学问题?国王能满足他的要求吗?,1.国际象棋问题,S64=1+2+4+8+263=?,2.求和公式的推导:,“错位相减法”,2.求和公式的推导:,等比数列有5个相关量,即a1,an,Sn,q,n,可以知三求二。,理论迁移,例1求下列等比数列的前8项的和。,例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?,小结作业,1.“错位相减法”不仅可以推导等比数列求和公式,而且可以用来求一类特殊数列的和.,3.利用方程思想和等比数列前n项和公式,可以求等比数列的首项、公比和项数.,作业:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论