浙江省温州市五校2015~2016学年度七年级上第一次联考数学试卷含答案解析_第1页
浙江省温州市五校2015~2016学年度七年级上第一次联考数学试卷含答案解析_第2页
浙江省温州市五校2015~2016学年度七年级上第一次联考数学试卷含答案解析_第3页
浙江省温州市五校2015~2016学年度七年级上第一次联考数学试卷含答案解析_第4页
浙江省温州市五校2015~2016学年度七年级上第一次联考数学试卷含答案解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市五校 2015 2016 学年度七年级上学期第一次联考数学试卷 一、选择题(本题有 10 小题,每小题 4 分,共 40 分每小题只有一个选项是正确的不选、多选、错选,均不给分) 1若 ,则 a, b, c 的大小关系是( ) A c b a B a c b C a b c D c a b 2已知数轴上三点 A、 B、 C 分别表示有理数 a、 1、 1,那么 |a+1|表示( ) A A 与 B 两点的距离 B A 与 C 两点的距离 C A 与 B 两点到原点的距离之和 D A 与 C 两点到原点的距离之和 3已知 a2+4, 2 6,则 35值是( ) A 8 B 12 C 16 D 18 4已知关于 x 的方程 =2( m x)的解满足 |x | 1=0,则 m 的值是( ) A 10 或 B 10 或 C 10 或 D 10 或 5两个 5 次多项式之和是( ) A 25 次多项式 B 50 次多项式 C 5 次多项式 D不高于 5 次多项式 6线段 A、 C 两点之间的距离是( ) A 9 3 9 3不能确定 7若 与 的两边分别平行,且 =( x+10) , =( 2x 25) ,则 的度数为( ) A 45 B 75 C 45或 75 D 45或 55 8 |x 2|+|x 3|+|x 4|的最小值是 ( ) A 1 B 2 C 3 D 4 9把前 2015 个数 1, 2, 3, , 2015 的每一个数的前面任意填上 “+”号或 “ ”号,然后将它们相加,则所得之结果为( ) A正数 B奇数 C偶数 D有时为奇数;有时为偶数 10计算 +( + ) +( + + ) + + + + +( + + + ) =( ) A 612 B 613 D 、填空题(本题有 8 小题,每小题 4 分,共 32 分) 11在如图的数轴上,点 B 与点 C 到点 A 的距离相等, A、 B 两点对应的实数分别是 1 和 ,则点 C 对应的实数是 12若一个正数的平方根是 a 5 和 2a 1,则这个正数是 13如果 的小数部分为 a, 的整数部分为 b,求 a+b 的值 14 = 15如果有 2015 名学生排成一列,按 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 的规律报数,那么第 2015 名学生所报的数是 16方程 的解是 x= 17如图所示,边长为 3 厘米与 5 厘米的两个正方形并排放在一起在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧则阴影部分的面积是 平方厘米( 取 3) 18平面上有 10 条直线,其中有 4 条直线是互相平行,那么这 10 条直线最多将平面分成 个部分 三、解答题(共 5 小题,满分 48 分) 19计算: 14+ 3+( 1) 2015 20已知代数式 x2+ 23x+5y+1) y+6 的值与字母 x 的取值无关,求的值 21 m 为正整数,已知二元一次方程组 有整数解,求 m 的值 22某班参加一次智力竞赛,共 a, b, c 三题,每题或者得满分或者得 0 分其中题 a 满分 20 分,题 b、题 c 满分分别为 25 分竞赛结果,每个学生至少答对了一题,三题全答对的有 1 人,答对其中两道题的有 15 人,答对题 a 的人数与答对题 b 的人数之和为 29,答对题 a 的人数与答对题 c 的人数之和为 25,答对题 b 的人数与答对题 c 的人数之和为 20,问这个班的平均成绩是多少分? 23如图,直线 C= 00, E、 F 在 ,且满足 分 1)求 度数; ( 2)若平行移动 么 值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值 ( 3)在平行移动 过程中,是否存在某种情况,使 存在,求出其度数;若不存在,说明理由 浙江省温州市五校 2015 2016 学年度七年级上学期第一次联考数学试卷 参考答案与试题解析 一、选择题(本题有 10 小题,每小题 4 分,共 40 分每小题只有一个选项是正确的不选、多选、错选,均不给分) 1若 ,则 a, b, c 的大小关系是( ) A c b a B a c b C a b c D c a b 【考点】 有理数大小比较 【分析】 因为 ,然后在不等式的两边同时乘以 1,然后再同时加 1,即可判断 【解答】 解: , +1 +1 +1,即 a b c 故选: A 【点评】 本题主要考查的是比较有理数的大小,利用不等式的性质进行变形是解题的关键 2已知数轴上三点 A、 B、 C 分别 表示有理数 a、 1、 1,那么 |a+1|表示( ) A A 与 B 两点的距离 B A 与 C 两点的距离 C A 与 B 两点到原点的距离之和 D A 与 C 两点到原点的距离之和 【考点】 数轴;绝对值 【分析】 此题可借助数轴用数形结合的方法求解、分析 【解答】 解: |a+1|=|a( 1) | 即:该绝对值表示 A 点与 C 点之间的距离; 所以答案选 B 【点评】 此题综合考查了数轴、绝对值的有关内容 3已知 a2+4, 2 6,则 35值是( ) A 8 B 12 C 16 D 18 【考点 】 整式的加减 【分析】 根据 a2+4, 2 6,求得 代入 35值即可 【解答】 解: a2+4, 2 6, 4 6+2 35( 14 +4( 6+2 52 324+858, 故选 D 【点评】 本题考查了整式的加减,注意整体思想的运用是解题的关键,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地 2016 届中考的常考点 4 已知关于 x 的方程 =2( m x)的解满足 |x | 1=0,则 m 的值是( ) A 10 或 B 10 或 C 10 或 D 10 或 【考点】 含绝对值符号的一元一次方程 【专题】 计算题 【分析】 解此题分两步:( 1)求出 |x | 1=0 的解;( 2)把求出的解代入方程 =2( m x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可 【解答】 解:先由 |x | 1=0, 得出 x= 或 ; 再将 x= 和 x= 分别代入 =2( m x), 求出 m=10 或 故选: A 【点评】 解答本题时要格外注意, |x | 1=0 的解有两个解出 x 的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法 5两个 5 次多项式之和是( ) A 25 次多项式 B 50 次多项式 C 5 次多项式 D不高于 5 次多项式 【考点】 整式的加减 【分析】 根据合并同类项的法则:系数相加作为系数,字母和字母的指数不变即可判断出正确答案 【解答】 解:根据合并同类项的法则可得:两个 5 次多项式相加,结果一定是不超过 5 次的多项式, 故选 D 【点评】 本题考查了整式的加减,以及合并同类项得法则,注意掌握合并同类项时系数相加作为系数,字母和字母的指数不变 6线段 A、 C 两点之间的距离是( ) A 9 3 9 3不能确定 【考点】 两点间的距离 【分析】 当 A, B, C 三点在一条直线上时,分点 C 在线段 延长线上和在线段 延长线上两种情况讨论;当 A, B, C 三点不在一条直线上时, A, C 两点之间的距离有多种可能不能确定 【解答】 解:( 1)当 A, B, C 三点在一条直线上时,分点 C 在线段 延长线上和在线段 延长线上两种情况讨论; 点 C 在线段 延长线上时, B+6=9m; 点在线段 延长线上时, C 3=3 ( 2)当 A, B, C 三点不在一条直线上时, A, C 两 点之间的距离有多种可能,不能确定 故选: D 【点评】 本题考查了两点间的距离,解题的关键是分类讨论 A, B, C 三点是否在一条直线上 7若 与 的两边分别平行,且 =( x+10) , =( 2x 25) ,则 的度数为( ) A 45 B 75 C 45或 75 D 45或 55 【考点】 平行线的性质 【专题】 分类讨论 【分析】 根据两角的两边互相平行得出两角相等或互补,得出方程,求出即可 【解答】 解: 与 的两边分别平行, + =180或 = , =( x+10) , =( 2x 25) , x+10+2x 25=180 或 x+10=2x 25, 解得: x=35 或 65, =45或 75, 故选 C 【点评】 本题考查了平行线的性质的应用,注意: 两直线平行,同位角相等, 两直线平行,内错角相等, 两直线平行,同旁内角互补 8 |x 2|+|x 3|+|x 4|的最小值是( ) A 1 B 2 C 3 D 4 【考点】 绝对值 【分析】 |x 2|+|x 3|+|x 4|表示数轴上某点到表示 2、 3、 4 三点的距离之和 【解答】 解: 可看作是数轴上表示 x 的 点到 2、 3、 4 三点的距离之和, 当 x=3 时, |x 2|+|x 3|+|x 4|有最小值 |x 2|+|x 3|+|x 4|的最小值 =|3 2|+|3 3|+|3 4|=2 故选: B 【点评】 本题主要考查的是绝对值的应用,明确 |x 2|+|x 3|+|x 4|的几何意义是解题的关键 9把前 2015 个数 1, 2, 3, , 2015 的每一个数的前面任意填上 “+”号或 “ ”号,然后将它们相加,则所得之结果为( ) A正数 B奇数 C偶数 D有时为奇数;有时为偶数 【考点】 有理数的加减混合运算 【专题】 计算题;实数 【分析】 把 1+2+2014+2015 分为( 1+2+2014) +2015,根据相邻两个数之和或之差为奇数,判断即可得到结果 【解答】 解: 相邻两个数之和或之差为奇数,且从 1 开始到 2014 共 1012 对, 偶数个奇数相加为偶数,再加上 2015 得到所得结果为奇数 故选 B 【点评】 此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键 10计算 +( + ) +( + + ) + + + + +( + + + ) =( ) A 612 B 613 D 考点】 有理数的加法 【专题】 计算题;推理填空题 【分析】 首先根据 = , + =1, + + =1 , + + + =2, ,判断出 、 + 、 + + 、 + + 、 、 + + + 构成了 为首项, 为公差的等差数列;然后根据等差数列的求和方法,求出算式的值 是多少即可 【解答】 解: +( + ) +( + + ) + + + + +( + + + ) = +1+1 +2+24 =( ) 492 =25492 =选: B 【点评】 此题主要考查了有理数的加法,以及等差数列的求和方法,要熟练掌握,解答此题的关键是判断出 、 + 、 + + 、 + + + 、 、 + + + 构成了 为首项, 为公差的等差数列 二、填空题(本题有 8 小题,每小题 4 分,共 32 分) 11在如图的数轴上,点 B 与点 C 到点 A 的距离相等, A、 B 两点对应的实数分别是 1 和 ,则点 C 对应的实数是 2+ 【考点】 实数与数轴 【分析】 设出点 C 所表示的数为 x,根据点 B、 C 到点 A 的距离相等列出方程,即可求出 x 【解答】 解:设点 C 所表示的数为 x, 点 B 与点 C 到点 A 的距离相等, B,即 x 1=1+ , 解得: x=2+ 故答案为: 2+ 【点评】 本题考查了实数与数轴的知识,根据条件点 B、 C 到点 A 的距离相等列出方程是关键 12若一个正 数的平方根是 a 5 和 2a 1,则这个正数是 9 【考点】 平方根 【分析】 利用一个非负数的平方根互为相反数即可得到关于 a 的方程,解方程即可解决问题 【解答】 解: 一个正数的平方根是 a 5 和 2a 1, 则 a 5+2a 1=0, 解得: a=2, 则 a 5= 3 所以这个正数是 9 故填 9 【点评】 此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,他们互相为相反数 13如果 的小数部分为 a, 的整数部分为 b,求 a+b 的值 4 【考点】 估算无理数的大小 【分析】 依据被开放数越大,对应的算术平方根越大估算出 与 的大小,从而求得 a、 b 的值,然后再进行计算即可 【解答】 解: 4 5 9, 2 3 a= 2 36 37 49, 6 7 b=6 a+b = 2+6 =4 故答案为: 4 【点评】 本题主要考查的是估算无理数的大小,求得 a、 b 的值是解题的关键 14 = 0 【考点】 绝对值 【分析】 根据绝对值的性质 ,先去掉绝对值,然后再进行加减运算 【解答】 解:原式 =( )( ) ( ) = + + + =0, 故答案为 0 【点评】 此题主要考查绝对值的性质,当 a 0 时, |a|=a;当 a0 时, |a|= a,解题的关键是如何根据已知条件,去掉绝对值 15如果有 2015 名学生排成一列,按 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 的规律报数 ,那么第 2015 名学生所报的数是 3 【考点】 规律型:数字的变化类 【分析】 首先观察题中数列存在规律:以 “1, 2, 3, 4, 3, 2”6 个数循环出现,用 2015 除以 6 看余数是多少,进行判断即可 【解答】 解:题中数列存在规律:以 “1, 2, 3, 4, 3, 2”6 个数循环出现, 20156=3355, 所以第 2015 名学生所报的数与第 5 个学生报的数相同,是 3, 故答案为: 3 【点评】 此题主要考查数列的规律探索与应用,观察已知找出存在的循环出现规律是解题的关键 16方程 的解是 x= 1008 【考点】 解一元一次方程 【专题】 计算题;一次方程(组)及应用 【分析】 方程左边整理后,利用拆项法变形,计算即可求出解 【解答】 解:方程整理得: x( + + + ) =2015, 即 2x( 1 + + ) =2015, 化简得: 2x( 1 ) =2015,即 2x =2015, 整理得: 2x=2016, 解得: x=1008 故答案为: 1008 【点评】 此题考查了解 一元一次方程,熟练掌握运算法则是解本题的关键 17如图所示,边长为 3 厘米与 5 厘米的两个正方形并排放在一起在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧则阴影部分的面积是 方厘米( 取 3) 【考点】 扇形面积的计算;勾股定理 【专题】 计算题 【分析】 如图,根据图形有 S 阴影部分 =S 扇形 梯形 S 后根据扇形、梯形和三角形的面积公式进行计算即可 【解答】 解:如图,正方形 边长为 3正方形 边长为 5 根据题意有, S 阴影部分 =S 扇形 梯形 S S 扇形 = ; S 梯形 ( 3+5) 3=12; S 38=12 S 阴影部分 = +12 12= = 故答案为 【点评】 本题考查了扇形的面积公式: S= ,其中 n 为扇形的圆心角的度数, R 为圆的半径),或 S= l 为扇形的弧长, R 为半径也考查了梯形和三角形的面积公式以及不规则几何图形面积的求法 18平面上有 10 条直线,其中有 4 条直线是互相平行,那么这 10 条直 线最多将平面分成 50 个部分 【考点】 平行线 【分析】 先计算出 6 条不平行的直线所能将平面分成的部分,然后再计算加入第一条平行线所增加的平面数量,从而可得出第二、第三、第四条加上后的总数量 【解答】 解: 6 条不平行的直线最多可将平面分成( 2+2+3+4+5+6) 22 个部分, 加入第一条平行线后,它与前面的 6 条直线共有 6 个交点,它被分成 7 段,每一段将原有的部分一分为二,因此增加了 7 个部分, 同理每增加一条平行线就增加 7 个部分, 故这 10 条直线最多将平面分成 22+74=50 故答案为 50 【点评】 本题 考查直线相交所产生平面个数的问题,有一定难度,注意先计算 6 条不平行的直线所分成的平面数量 三、解答题(共 5 小题,满分 48 分) 19计算: 14+ 3+( 1) 2015 【考点】 有理数的混合运算 【专题】 计算题;实数 【分析】 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果 【解答】 解:原式 = 1+ 4( 4) = 1 8= 9 【点评】 此题考查了有理数的混 合运算,熟练掌握运算法则是解本题的关键 20已知代数式 x2+ 23x+5y+1) y+6 的值与字母 x 的取值无关,求的值 【考点】 整式的加减 化简求值 【专题】 计算题 【分析】 首先对题中前一个代数式合并同类项,由代数式的值与字母 x 无关求得 a、 b 的值,再把 a、b 的值代入后一个代数式计算即可注意第二个代数式先进行合并同类项,可简化运算 【解答】 解: x2+ 23x+5y+1) y+6 =( 1 2b) a+3) x 6y+5, 因为此代数式的值与字母 x 无关,所以 1 2b=0, a+3=0;解得 a= 3, b= , = a3+ 当 a= 3, b= 时, 上式 = ( 3) 3+ = 【点评】 此题考查的知识点是整式的加减化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为 0 21 m 为正整数,已知二元一次方程组 有整数解,求 m 的值 【考点】 二元一次方程组的解 【专题】 计算题 【分析】 利用加减消元法易得 x、 y 的解,由 x、 y 均为整数可解得 m 的值 【解答】 解:关于 x、 y 的方程组: , +得:( 3+m) x=10,即 x= , 把 代入 得: y= , 方程的解 x、 y 均为整数, 3+m 既能整除 10 也能整除 15,即 3+m=5,解得 m=2 故 m 的值为 2 【点评】 本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单 22某班参加一次智力竞赛,共 a, b, c 三题,每题或者得满分或者得 0 分其中题 a 满分 20 分,题 b、题 c 满分分别为 25 分竞赛结果,每个学生至少答对了一题,三题全答对的有 1 人,答对其中两道题的有 15 人,答对题 a 的人数与答对题 b 的人数之和为 29,答对题 a 的人数与答对题 c 的人数之和为 25,答对题 b 的人数与答对题 c 的人数之和为 20,问这个班的平均成绩是多少分? 【考点】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论