




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市兴化市顾庄学区三校 2016年九年级(上)第一次月考数学试卷 (解析版 ) 一、选择题(本大题共 6 小题,每题 3 分,共 18 分) 1下列关于 x 的一元二次方程有实数根的是( ) A =0 B x2+x+1=0 C x+1=0 D x 1=0 2两名同学进行了 10 次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( ) A众数 B中位数 C方差 D以上都不对 3一个直角三角形斜边长为 10切圆 半径为 这个三角形周长是( ) A 22 23 24 26一个不透明的盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 2 个是白球从该盒子中任意摸出一个球,摸到黄球的概率是( ) A B C D 5有下列四个命题中,其中正确的有 ( ) 三角形的内心到三角形各边的距离都相等; 经过三个点一定可以作圆; 三角形的外心到三角形各顶点的距离都相等; 半径相等的两个半圆是等弧 A 4 个 B 3 个 C 2 个 D 1 个 6在平面直角坐标系中,以点( 3, 5)为圆心, r 为半径的圆上有且仅有两点到 x 轴所在直线的距离等于 1,则圆的半径 r 的取值范围是( ) A r 4 B 0 r 6 C 4 r 6 D 4 r 6 二、填空题(共 10 小题,每小题 3 分,满分 30 分) 7写出一个一根为零,并且二次项系数为 1 的一元二次方程 8一组数据 3、 1、 0、 2、 x 的极差是 5,则 x= 9方程 21=0 根的情况是 10某商店举办有奖销售活动,购物满 100 元者发兑奖劵一张,在 1000 张奖券中,设特等奖一个,一等奖 10 个,二等奖 100 个,若某人购物刚好满 100 元,那么他中奖一等奖的概率是 11如图, O 直径, D=35,则 度 12如图是一个圆锥的正视图,则该圆锥的侧面积是 13已知圆 O 的半径为 5, 圆 O 的直径, D 是 长线上一点, 圆 O 的切线,C 是切点,连接 0,则 长为 14一只不透明的袋子中装有 1 个白球, 2 个红球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出 1 个球,两次都摸出红球的概率是 15在 ,点 I 是内心,若 A=80,则 度 16如图,某数学兴趣小组将边长为 3 的正方形铁丝框 形为以 A 为圆心, 半径的扇形(忽略铁丝的粗细),则所得的扇形 面积为 三、解答题(共 10 小题,满分 102 分) 17( 12 分)解方程: 9( x 1) 2=4 36y+2=0 (配方法) 18( 8 分)八( 1)班 20 名学生的第一次数据竞赛的成绩分布情况如表: 成绩(分) 50 60 70 80 90 人数(人) 1 4 x y 2 ( 1)若成绩的平均分为 73 分,求 x、 y 的值; ( 2)在( 1)的条件下,设此班 20 名学生竞赛成绩的众数为 a,中位数为 b,求 a b 的值 19( 8 分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了 5 箭,他们的总成绩(单位:环)相同 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 甲成绩 9 4 7 4 6 乙成绩 7 5 7 a 7 ( 1) a= , = ; ( 2) 分别计算甲、乙成绩的方差 请你从平均数和方差的 角度分析,谁将被选中 20( 8 分)在直径为 650圆柱形油罐内装进一些油后,其横截面如图,若油面宽00油的最大深度 21( 10 分)已知关于 x 的方程 2k+1) x+4( k ) =0 ( 1)求证:不论 k 取什么实数值,这个方程总有实数根; ( 2)若等腰三角形 底边长为 a=3,两腰的长 b、 c 恰好是这个方程的两个根,求 周长 22( 10 分)如图所示,可以自 由转动的转盘被 3 等分,指针落在每个扇形内的机会均等 ( 1)现随机转动转盘一次,停止后,指针指向 1 的概率为 ; ( 2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由 23( 10 分)春秋旅行社为吸引市民组团去上海参观世博会,推出了如下收费标准:如果人数不超过 25 人,人均旅游费用为 1000 元;如果人数超过 25 人,每增加 1 人,人均旅游费用降低 20 元,但人均旅游费用不得低于 700 元某单位组织员工 去上海参观世博会,共支付给春秋旅行社旅游费用 27000 元,请问该单位这次共有多少员工去上海参观世博会? 24( 10 分)如图,已知 分 O 是 任意一点, O 相切于点 E,交 A、 B 两点 ( 1)求证: O 相切; ( 2)如果 0, ,求劣弧 的长 25( 12 分)如图, O 的内接四边形 组对边的延长线分别交于点 E、 F ( 1)若 E= F 时,求证: ( 2)若 E= F=42时,求 A 的度数; ( 3)若 E=, F=,且 请你用含有 、 的代数式表示 A 的大小 26( 14 分)如图, O 的直径 , C 为圆周上一点, ,过点 C 作 O 的切线 点为优弧 上一动点(不与 A、 C 重合) ( 1)求 度数; ( 2)当点 P 移动到 的中点时,求证:四边形 菱形 ( 3) P 点移动到什么位置时, 等,请说明理由 2016年江苏省泰州市兴化市顾庄学区三校九年级(上)第一次月考数学试卷 参考答案与试题解析 一、选择题(本大题共 6 小题,每题 3 分,共 18 分) 1下列关于 x 的一元二次方程有实数根的是( ) A =0 B x2+x+1=0 C x+1=0 D x 1=0 【考点】 根的判别式 【分析】 计算出各项中 方程根的判别式的值,找出根的判别式的值大于等于 0 的方程即可 【解答】 解: A、这里 a=1, b=0, c=1, =4 4 0, 方程没有实数根,本选项不合题意; B、这里 a=1, b=1, c=1, =4 4= 3 0, 方程没有实数根,本选项不合题意; C、这里 a=1, b= 1, c=1, =4 4= 3 0, 方程没有实数根,本选项不合题意; D、这里 a=1, b= 1, c= 1, =4+4=5 0, 方程有两个不相等实数根,本选项符合题 意; 故选 D 【点评】 此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键 2两名同学进行了 10 次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( ) A众数 B中位数 C方差 D以上都不对 【考点】 统计量的选择 【分析】 根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差 【解答 】 解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差 故选: C 【点评】 本题考查方差的意义以及对其他统计量的意义的理解它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立 3一个直角三角形斜边长为 10切圆半径为 这个三角形周长是( ) A 22 23 24 26考点】 三角形的内切圆与内心 【分析】 先画图,设 AD=x,则 0 x,由切线长定理得 F=x, E=10 x,可 证明四边形 正方形,则 F=由三角形的周长公式求出这个三角形周长 【解答】 解:如图, 设 AD=x,则 0 x, O 是 切圆, F=x, E=10 x, C= 0, F, 四边形 正方形, F= 这个三角形周长 2x+2( 10 x) +3=23 故选 B 【点评】 本题考查了三角形的内切圆和内心,以及切线长定理,是基础知识比较简单 4一个不透明的盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 2 个是白球从该盒子中任意摸出一个球,摸到黄球的概率是( ) A B C D 【考点】 概率公式 【分析】 利用黄球的个数除以球的总个数即可得到答案 【解答】 解: 盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 摸到黄球的概率是 = , 故选: C 【点评】 此题主要考查了概率公式的应用,关键是掌握概率公式:所求情况数与总情况数之比 5有下列四个命题中,其中正确的有( ) 三角形的内心到三角形各边的距离都相等; 经过三个点一定可以作圆; 三角形的外心到三角形各顶点的距离都相等; 半径相等的两个半圆是等弧 A 4 个 B 3 个 C 2 个 D 1 个 【考点】 命题与定理 【分析】 利用弧 的定义,构成圆的条件,外心性质以及内心性质判断即可 【解答】 解: 三角形的内心到三角形各顶点的距离都相等,错误; 经过三个点一定可以作圆,错误; 三角形的外心到三角形各顶点的距离都相等,正确; 半径相等的两个半圆是等弧,正确; 故选 C 【点评】 本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、内心和外心的性质等知识,难度不大 6在平面直角坐标系中,以点( 3, 5)为圆心, r 为半径的圆上有且仅有两点到 x 轴所在直线的距离等于 1,则圆的半径 r 的取值范围是( ) A r 4 B 0 r 6 C 4 r 6 D 4 r 6 【考点】 直线与圆的位置关系 【分析】 根据题意可知,本题其实是利用圆与直线 y=1 和直线 y= 1 之间的位置关系来求得半径 r 的取值范围,根据相离时半径小于圆心到直线的距离,相交时半径大于圆心到直线的距离即可求得 r 的范围 【解答】 解:根据题意可知到 x 轴所在直线的距离等于 1 的点的集合分别是直线 y=1 和直线 y= 1, 若以点( 3, 5)为圆心, r 为半径的圆上有且仅有两点到 x 轴所在直线的距离等于 1, 那么该圆与直线 y= 1 必须是相离的关系,与直线 y=1 必须是相交的关系, 所以 r 的取 值范围是 | 5| | 1| r | 5|+1, 即 4 r 6 故选 D 【点评】 解决本题要认真分析题意,理清其中的数量关系看似求半径与 x 轴之间的关系,其实是利用圆与直线 y=1 和直线 y= 1 之间的位置关系来求得半径 r 的取值范围 二、填空题(共 10 小题,每小题 3 分,满分 30 分) 7写出一个一根为零,并且二次项系数为 1 的一元二次方程 4x=0 【考点】 一元二次方程的解 【分析】 由题意可知: a=1, ;只要再假设出另一根的值即可求出方程 【解答】 解:设 , 由一元二次方程的基本 形式: bx+c=0, 将 a=1, , ,代入上式得: , 解得 b= 4; 所以,方程是 4x=0; 本题答案不唯一 【点评】 本题是根据方程的两根的定义,利用待定系数法求解方程式 8一组数据 3、 1、 0、 2、 x 的极差是 5,则 x= 2 或 4 【考点】 极差 【分析】 根据极差的公式:极差 =最大值最小值 x 可能是最大值,也可能是最小值,分两种情况讨论 【解答】 解:当 x 是最大值,则 x( 1) =5, 所以 x=4; 当 x 是 最小值,则 3 x=5, 所以 x= 2; 故答案为 2 或 4 【点评】 本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值同时注意分类的思想的运用 9方程 21=0 根的情况是 两个不相等的实数根 【考点】 根的判别式 【分析】 先计算 =( 2m) 2 4 1 ( 1) =4,由于 非负数,则 4 0,即 0,根据一元二次方程 bx+c=0( a 0)的根的判别式 =4意义即可判断方程根的情况 【解答】 解: =( 2m) 2 4 ( 1) =4 0, 两个不相等的实数根, 故答案为:两个不相等的实数根 【点评】 本题考查了一元二次方程 bx+c=0( a 0, a, b, c 为常数)的根的判别式 =4 0 时,方程有两个不相等的实数根;当 =0 时,方程有两个相等的实数根;当 0 时,方程没有实数根 10某商店举办有奖销售活动,购物满 100 元者发兑奖劵一张,在 1000 张奖券中,设特等奖一个,一等奖 10 个,二等奖 100 个,若某人购物刚好满 100 元,那么他中奖一等奖的概率是 【考点】 概率公式 【分析】 根据在 1000 张奖券中,设特等奖一个,一等奖 10 个,二等奖 100 个,可以求得他中奖一等奖的概率,本题得以解决 【解答】 解:由题意可得, 他中奖一等奖的概率是: , 故答案为: 【点评】 本题考查概率公式,解题的关键是明确题意,找出所求问题需要的条件 11如图, O 直径, D=35,则 110 度 【考点】 圆周角定理 【分析】 由 O 直径, D=35,根据圆周角定理,即可求得 度数,继而求得答案 【解答】 解: D=35, D=70, O 直径, 80 10 故答案为: 110 【点评】 此题考查了圆周角定理此题比较简单,注意掌握数形结合思想的应用 12如图是一个圆锥的正视图,则该圆锥的侧面积是 【考点】 由三视图判断几何体;圆锥的计算 【分析】 根据圆锥正视图的特点计算出圆锥的底面半径和母线即可求出圆锥的侧面积 【解答】 解: 圆锥的底面半径 r= = ,母线长 l=2, 圆锥的侧面积为 = 故答案为: 【点评】 本题主要考查三视图的应用以及圆锥的侧面积公式,要求根据条件计算出圆锥的母线和底面半径即可要求熟练掌握圆锥的侧面积公式 13已知圆 O 的半径为 5, 圆 O 的直径, D 是 长线上一点, 圆 O 的切线,C 是切点,连接 0,则 长为 5 【考点】 切线的性质;含 30 度角的直角三角形;圆周角定理 【分 析】 先利用 “同弧所对的圆周角是圆心角的一半 ”得出 A=60再解直角三角形可得 ,最后用切割线定理可得 【解答】 解:连接 圆 O 的直径, 圆 O 的切线, C 是切点, 0, 0, A=60, C , 由切割线定理得, DD( B), 故答案为: 5 【点评】 本题利用了直径对的圆周角是直角,切线的性质,切割线定理等 14一只不透明的袋子中装有 1 个白球, 2 个红球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出 1 个球,两次都摸出红球的概率是 【考点】 列表法与树状图法 【分析】 先利用画树状图展示所有 9 种等可能的结果数,再找出两次都摸出红球的结果数,然后根据概率公式求解 【解答】 解:画树状图为: 共有 9 种等可能的结果数,其中两次都摸出红球的结果数为 4, 所以任意摸出 1 个球,两次都摸出红球的概率 = 故答案为 【点评】 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数 n,再从中选出符合事件 A 或 B 的结果数目 m,然后根据概率公式计算出事件 A 或 B 的概率 15在 ,点 I 是内心,若 A=80,则 50 度 【考点】 三角形的内切圆与内心 【分析】 连接 点 I 是内心,得到 0,根据四边形的内角和得到 00,由圆周角定理即可得到结论 【解答】 解:连接 点 I 是内心, 0, A=80, 00, 0, 故答案为: 50 【点评】 本题考查了三角形的内切圆与内心,圆周角定理,四边形内角和定理的应用,掌握的作 出辅助线是解题的关键 16如图,某数学兴趣小组将边长为 3 的正方形铁丝框 形为以 A 为圆心, 半径的扇形(忽略铁丝的粗细),则所得的扇形 面积为 9 【考点】 扇形面积的计算 【分析】 由正方形的边长为 3,可得弧 弧长为 6,然后利用扇形的面积公式: S 扇形 算即可 【解答】 解: 正方形的边长为 3, 弧 弧长 =6, S 扇形 6 3=9 故答案为: 9 【点评】 此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式 S 扇形 三、解答题(共 10 小题,满分 102 分) 17( 12 分)( 2016 秋 兴化市校级月考)解方程: 9( x 1) 2=4 36y+2=0 (配方法) 【考点】 解一元二次方程 一 元二次方程 【分析】 ( 1)根据直接开平方法,可得方程的解; ( 2)根据配方法,可得方程的解 【解答】 解:( 1)两边都除以 9,得 ( x 1) 2= , 开方,得 x 1= , , ; ( 2)移项,得 36y= 2,二次项系数化为 1,得 2y= , 配方,得 2y+1= , 即( y 1) 2= , 开方,得 y 1= , , 【点评】 本题考查了解一元二次方程,利用配方法解题的关键是配方,配方法的步骤是移项,二次项系数化 为 1,配方,开方 18八( 1)班 20 名学生的第一次数据竞赛的成绩分布情况如表: 成绩(分) 50 60 70 80 90 人数(人) 1 4 x y 2 ( 1)若成绩的平均分为 73 分,求 x、 y 的值; ( 2)在( 1)的条件下,设此班 20 名学生竞赛成绩的众数为 a,中位数为 b,求 a b 的值 【考点】 众数;中位数 【分析】 ( 1)根据题意可以得到关于 x、 y 的二元一次方程组,解方程组即可求得 x、 y 的值; ( 2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的 那个数(最中间两个数的平均数),叫做这组数据的中位数再代入计算可求 a b 的值 【解答】 解:( 1)由题意,得: , 解得 ; ( 2)由( 1)可知: a=80, b=75, 则 a b=80 75=5 【点评】 本题为统计题,考查平均数、众数与中位数的意义会解二元一次方程组 19某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了 5 箭,他们的总成绩(单位:环)相同 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 甲成绩 9 4 7 4 6 乙成绩 7 5 7 a 7 ( 1) a= 4 , = 6 ; ( 2) 分别计算甲、乙成绩的方差 请你从平均数和方差的角度分析,谁将被选中 【考点】 方差;算术平均数 【分析】 ( 1)根据他们的总成绩相同,得出 a=30 7 7 5 7=4,进而得出 30 5=6 ( 2) 观察图,即可得出计算甲、乙成绩的方差; 因为两人成绩的平均水平(平 均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中 【解答】 解:( 1)由题意得:甲的总成绩是: 9+4+7+4+6=30, 则 a=30 7 7 5 7=4, 30 5=6; ( 2)甲的方差为: ( 9 6) 2+( 4 6) 2+( 7 6) 2+( 4 6) 2+( 6 6) 2= 乙的方差为: ( 7 6) 2+( 5 6) 2+( 7 6) 2+( 4 6) 2+( 7 6) 2= 因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中; 故答案为:( 1) 4, 6 【点评】 此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出 a 的值进而利用方差的意义比较稳定性即可 20在直径为 650圆柱形油罐内装进一些油后,其横截面如图,若油面宽 00油的最大深度 【考点】 垂径定理的应用;勾股定理 【分析】 首先过点 O 作 点 C,交 O 于点 D,连接 垂径定理即可求得长,然后由勾股定理,求得 长,继而求得油的最大深度 【解答】 解:过点 O 作 点 C,交 O 于点 D,连接 由垂径定理得: 600=300( 在 , 3002+252, 解得: 25 D 25 125=200( 答:油的最大深度是 200 【点评】 此题考查了垂径定理与勾股定理的应用此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用 21( 10 分)( 2016 秋 兴化市校级月考)已知关于 x 的方程 2k+1) x+4( k )=0 ( 1)求证:不论 k 取什么实数值,这个方程总有实数根; ( 2)若等腰三角形 底边长为 a=3,两腰的长 b、 c 恰好是这个方程的两个根,求 周长 【考点】 根的判别式;三角 形三边关系;等腰三角形的性质 【分析】 ( 1)根据方程各项的系数利用根的判别式即可得出 =( 2k 3) 2 0,此题得证; ( 2)根据等腰三角形的性质即可得出 k 的值,将其代入方程求出 b、 c 的值,再根据三角形的周长公式即可得出结论 【解答】 ( 1)证明:在方程 2k+1) x+4( k ) =0 中, =( 2k+1) 2 4 1 4( k ) =( 2k 3) 2 0, 不论 k 取什么实数值,这个方程总有 实数根; ( 2)解: 三角形为等腰三角形, =( 2k 3) 2=0, k= 将 k= 代入原方程中,得: 4x+4=0, 解得: b=c=2, C +B+C=7 【点评】 本题考查了根的判别式以及等腰三角形的性质,根据方程根的判别式的符号确定方程解得情况是解题的关键 22( 10 分)( 2014盐城)如图所示,可以自由转动的转盘被 3 等分,指针落在每个扇形内的机会均等 ( 1) 现随机转动转盘一次,停止后,指针指向 1 的概率为 ; ( 2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由 【考点】 游戏公平性;列表法与树状图法 【分析】 ( 1)三个等可能的情况中出现 1 的情况有一种,求出概率即可; ( 2)列表得出所有等可能的情况数,求出两人获胜的概率,比较即可得到结果 【解答】 解:( 1)根据题意得:随机转动转盘一次,停 止后,指针指向 1 的概率为 ; 故答案为: ; ( 2)列表得: 1 2 3 1 ( 1, 1) ( 2, 1) ( 3, 1) 2 ( 1, 2) ( 2, 2) ( 3, 2) 3 ( 1, 3) ( 2, 3) ( 3, 3) 所有等可能的情况有 9 种,其中两数之积为偶数的情况有 5 种,之积为奇数的情况有 4 种, P(小明获胜) = , P(小华获胜) = , , 该游戏不公平 【点评】 此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平 23( 10 分)( 2008深圳模拟)春秋旅行社为吸引市民组团去上海参观世博会,推出了如下收费标准:如果人数不超过 25 人,人均旅游费用为 1000 元;如果人数超过 25 人,每增加 1 人,人均旅游费用降低 20 元,但人均旅 游费用不得低于 700 元某单位组织员工去上海参观世博会,共支付给春秋旅行社旅游费用 27000 元,请问该单位这次共有多少员工去上海参观世博会? 【考点】 一元二次方程的应用 【分析】 设该单位这次共有 x 名员工去上海参观世博会,根据每增加 1 人,人均旅游费用降低 20 元,且共支付给春秋旅行社旅游费用 27000 元,可列出方程求解,根据人均旅游费用不得低于 700 元,判断解是否合理 【解答】 解: 1000 25=25000 27000 去的人一定超过 25 人 设该单位这次共有 x 名员工去上海参观世博会, 1000 20( x 25) x=27000, 解之得: 0, 5, 当 x=30 时,人均费用为 900 元 当 x=45 时,人均费用为 600 元,因为低于 700 元,这种情况舍去 所以 x=30 答:该单位这次共有 30 名员工去上海参观世博会 【点评】 本题考查理解题意的能力,关键以支付给旅行社的费用作为等量关系列方程求解 24( 10 分)( 2015黔东南州)如图,已知 分 O 是 任意一点, O 相切于点 E,交 A、 B 两点 ( 1)求证: O 相切; ( 2)如果 0, ,求劣弧 的长 【考点】 切线的判定与性质;弧长的计算 【分析】 ( 1)连接 O 作 图所示,利用 到三角形 三角形等,利用全等三角形对应边相等得到 =可确定出 圆 O 相切; ( 2)在直角三角形 ,利用 30 度所对的直角边等于斜边的一半求出 长, 用弧长公式即可求出劣弧 的长 【解答】 ( 1)证明:连接 O 作 图所示, 圆 O 相切, 0, 分 在 , , E, 则 圆 O 相切; ( 2)在 , 0, , 0, , 20, 则 的长 l= = 【点评】 此题考查了切线的判定与性质,弧长公式,熟练掌握切线的判定与性质是解本题的关键 25( 12 分)( 2015佛山)如图, O 的内接四边形 组对边的延长线分别交于点E、 F ( 1)若 E= F 时,求证: ( 2)若 E= F=42时,求 A 的度数; ( 3)若 E=, F=,且 请你用含有 、 的代数式表示 A 的大小 【考点】 圆内接四边形的性质;圆周角定理 【分析】 ( 1)根据外角的性质即可得到结论; ( 2)根据圆内接四边形的性质和等量代换即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿石采石场股份置换及资源综合利用合同
- 智能在线艺术品鉴定系统开发合同
- 高端商务区地下车库车位买卖合同模板
- 怀旧品牌活动方案
- 怎样安排集体活动方案
- 思维发展活动方案
- 恒大三八小区活动方案
- 恩施小学活动方案
- 情侣创意活动方案
- 情商教育活动方案
- 求职委托代理协议书
- 辽宁省沈阳市(2024年-2025年小学四年级语文)人教版期末考试((上下)学期)试卷及答案
- TDSQL认证考试考题及答案-70分版
- 2025年日历( 每2个月一张打印版)
- RB/T 228-2023食品微生物定量检测的测量不确定度评估指南
- 2023年北京海淀社区工作者考试真题
- 2024年国开电大 高级财务会计 形考任务4答案
- 2024年广东省惠州一中学英语七下期末达标检测试题含答案
- 2019大学学术规范测试题库500题(含标准答案)
- AQ 1071-2009 煤矿用非金属瓦斯输送管材安全技术要求(正式版)
- 上海延安初级中学新初一均衡分班语文试卷含答案
评论
0/150
提交评论