3comparing control strategies for automomous line-tracking robots.pdf
机器人五自由度机器人结构设计(全套含CAD图纸)
收藏
资源目录
编号:9554081
类型:共享资源
大小:2.17MB
格式:ZIP
上传时间:2018-03-14
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
45
积分
- 关 键 词:
-
机器人
自由度
结构设计
全套
cad
图纸
- 资源描述:
-









- 内容简介:
-
COMPARINGCONTROLSTRATEGIESFORAUTONOMOUSLINETRACKINGROBOTSLUISALMEIDA,ALEXANDREMOTA,PEDROFONSECAIDA,ALEX,PJTIAPTDEPARTAMENTODEELECTRONICAETELECOMUNICA5ESUNIVERSIDADEDEAVEIRO,P3810AVEIRO,PORTUGALTEL35134370859FAX35134381128ABSTRACTAUTONOMOUSMOBILEROBOTICSISAVERYEXCITINGAREAFORSTUDENTSPARTICULARLYFORTHOSEWHOATTENDCOURSESONELECTRONICSTHEAUTHORSHAVEBEENINVOLVEDINSEVERALACTIVITIESINTHISAREATOGETHERWITHSTUDENTSOFTHEUNIVERSITYOFAVEIROINPARTICULAR,ONEOFSTICHACTIVITIESISTOBUILDROBOTSTOFOLLOWALINEDRAWNONTHEJLOORINORDERTODOTHISEFFICIENTLYASIMULATORHASBEENIMPLEMENTEDANDUSEDTOTESTTHEINFLUENCEOFDIFFERENTCONTROLAPPROACHESTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEMATLABBASEDROBOTMODELANDLINETRACKINGSIMULATORITTHENCOMPARESSEVERALDRFFERENTCONTROLAPPROACHESINTERMSOFRESTILTINGINTEGRALABSOLUTEERRORIAEANDINTEGRALSQUAREDERRORISE,EASINESSOFTUNINGANDCOMPLEXIFYOFTHERESPECTIVECODETHECOMPAREDAPPROACHESAREPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FZZY,TABLEBASEDFUZZY,SELFORGANISINGFIIZZYANDNEURALNETINVERSEMODELBASED1INTRODUCTIONBUILDINGAUTONOMOUSROBOTSISANINTERDISCIPLINARYACTIVITYANDTHUSHASAGREATPEDAGOGICALVALUEWITHTHISFACTINMINDTHEAUTHORSHAVEBEENSUPPORTINGSTUDENTTEAMSFROMTHEUNIVERSITYPFAVEIROTOPARTICIPATEINANANNUALEVENTTHATTAKESPLACESINFRANCEWHERE,BASICALLY,AUTONOMOUSMOBILEROBOTSHAVETOFOLLOWALINE,AMONGSTOTHERTASKSTOBETTERUNDERSTANDTHEBEHAVIOUROFTHELINETRACKINGROBOTANDTOSHOWSTUDENTSHOWDIFFERENTSCIENTIFICCONCEPTSFROMPHYSICS,GEOMETRY,ELECTRONICS,INSTRUMENTATIONANDCONTROLAREINTEGRATEDWHENBUILDINGSUCHAROBOT,THEAUTHORSHAVEDEVELOPEDANANALYTICAL0780344847198I100001998IEEE542MODELOFTHELINEFOLLOWINGROBOTLTHEMODELTAKESINTOACCOUNTSEVERALREALWORLDCONSTRAINTSANDALLOWSTOPREDICTTHEMOVEMENTOFTHEROBOTBASEDONTHEELECTRICALVOLTAGESAPPLIEDTOTHEMOTORSALSOINLTHEAUTHORSHAVEDESCRIBEDTHEGEOMETOFTHELINETRACKINGPROCESSWHICHWASUSEDTOBUILDASIMULATORTHISALLOWEDTODETERMINETHEPATHOFTHEROBOTASWELLASTHERELATIONSHIPBETWEENTHISPATHANDTHEREFERENCEPATHTHATTHEROBOTISTOFOLLOWTHESIMULATORISAVALUABLETOOLTOCOMPAREDIFFERENTCONTROLAPPROACHES,ASWELLASDIFFERENTSENSORLAYOUTS,PRIORTOTHEROBOTCONSTRUCTIONTHISALLOWSFORBETTERDECISIONSCONCERNINGTHEPHYSICALPROPERTIESOFTHEROBOTBEFOREACTUALLYBUILDINGITINTHENEXTSECTIONTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEROBOTMODELANDOFTHESIMULATORINSECTION3SEVERALCONTROLAPPROACHESARECOMPARED,NAMELYPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FUZZY,TABLEBASEDFUZZY,SELFORGANISINGFUZZYANDNEURALNETINVERSEMODELBASEDCONCLUSIONSAREDRAWNINSECTION4WHICHALSOINCLUDESSOMECOMMENTSCONCERNINGONGOINGWORK2SIMULATINGTHEROBOT21THEROBOTMODELTHEROBOTSWHICHHAVEBEENBUILTBYTHESTUDENTSINTHEACTIVITIESMENTIONEDBEFOREARENORMALLYSIMPLEFIG1MOTIONISACHIEVEDBYUSINGTWOINDEPENDENTDCELECTRICMOTORSTHATDRIVEONEWHEELEACHDIFFERENTIALDRILEI5USEDTOSTEERTHEROBOTONEORTWOEXTRACASTERWHEELSAREAMC98COIMBRAUSEDTOKEEPTHEROBOTHORIZONTALLYTHEDEVIATIONOFTHEROBOTFROMTHEREFERENCEPATHISMEASUREDBYASETOFSENSORSPLACEDAHEADOFTHEROBOTWHICHARE,NORMALLY,INFRAREDLIGHTDETECTORSTYPICALLY,CLOSEDLOOPCONTROLOFTHEWHEELSVELOCITYHASNOTBEENDONETHEVELOCITYOFEACHWHEELISCONTROLLEDINDIRECTLYBYAPPLYINGVOLTAGESTOTHEMOTORSTHISOPTIONMAYDECREASETHEPERFORMANCEOFTHETRACKINGALGORITHMBUTSIMPLIFIESTHEFINALTUNINGREMEMBERTHATTHEUSEOFCLOSEDLOOPWHEELSPEEDCONTROLWOULDREQUIRETHETUNINGOFTWOEXTRAINDEPENDENTLOOPSFIGURE1THEBASICROBOTTHESECHARACTERISTICSHAVEBEENUSEDTODERIVEAMODELFORTHELINETRACKINGROBOTFIG2TOIMPROVEITSACCURACYTHEMODELTAKESINTOACCOUNTINERTIAMASSMANDMOMENTOFINERTIAA,FRICTIONCOEFFICIENTSFORTRANSLATIONALBYANDROTATIONALB,MOVEMENTS,ELECTRICMOTORSPARAMETERSTHERESISTANCERANDTHEMOTORCONSTANTKM,ADDITIVENOISEINTHESENSORREADINGSANDPHYSICALLIMITATIONSOFTHEROBOTSUCHASTHELENGTHOFTHELINESENSORS5ANDTHEMAXIMUMVOLTAGETHATCANBEAPPLIEDTOTHEMOTORSV“THEMODELISDESCRIBEDINLANDALLOWSTOCALCULATEBOTHLINEARVANDANGULAR0VELOCITIESOFTHEROBOTBASEDONTHEVOLTAGESAPPLIEDTOTHEMOTORSVOWAVERAGE,ANDV,DIFFERENTIAL22THELINETRACKINGSIMULATORTHEROBOTMODELREFERREDTOABOVE,WASCOMPLEMENTEDWITHAGEOMETRICANALYSISOFTHELINETRACKINGPROBLEMTHISPROBLEMFALLSWITHINTHEGENERALPATHTRACKINGPROBLEMWHICHHASBEENTREATEDINTHELITERATURE,EG2INPARTICULAR,THESIMULATORPRESENTEDINTHISARTICLEFOLLOWSAREACTIVEAPPROACHTOTRACKANUNKNOWNLINEASOPPOSEDTOTHEPLANNINGAPPROACHOFTRACKINGAPATHPREVIOUSLYPLANNEDANDTHUS,KNOWNINADVANCEINLAGEOMETRICANALYSISISALSOSHOWNTHATALLOWSTOCALCULATETHENEXTDEVIATIONFROMTHELINEEBASEDONTHEPRESENTDEVIATION,WHEELSVELOCITIESANDANGULARPOSITIONOFTHEROBOTRELATIVETOTHELINETHEROBOTISUSEDASREFERENTIALHOWEVER,INORDERTOBETTERDEFINETHEREFERENCETRAJECTORYANDTOVISUALISETHEROBOTTRAJECTOQ,ANOTHERMODELWASBUILTINWHCHTHEROBOTPOSITIONWASREFERREDTOANABSOLUTEREFERENTIALINTHISGEOMETRICMODEL,THENEXTDEVIATIONFROMTHELINEEISCALCULATEDBASEDONTHEROBOTABSOLUTEPOSITIONANDTHEWHEELSVELOCITIESKNOWINGTHEROBOTPOSITIONXO,YO,ARITISPOSSIBLETOCALCULATETHEINTERSECTIONOFTHESENSORARRAYWITHTHELINEXEY,WHICHTHENALLOWSTOCALCULATETHEDEVIATIONEFIG3THERESULTINGDEPENDENCYOFERELATIVETOTHEPOSITIONOFTHEROBOTISNONLINEARTHEVELOCITIESAREUSEDTOCALCULATETHEROBOTDISPLACEMENTDZ,DA,DURINGANINFINITESIMALTIMEINTERVAL200WASFOUNDTHATBESTRESULTSWEREOBTAINEDWITHK,TOOANDKP380FIGURE8SHOWSTHEDEVIATIONOBTAINEDALONGTHEREFERENCEPATHWITHTHESEVALUESTHEABSOLUTEMAXIMUMDEVIATIONIS23MMANDTHEIAEIS66ANOTEWORTHREFERRINGISTHEFACTTHATTHECONTROLLERISCAPABLEOFCONVERGINGTOZERODEVIATIONOVERSTRAIGHTSEGMENTSBUTINCURVESWITHCONSTANTRADIUS,THEDEVIATIONCONVERGESTOANONZEROVALUESINCETHEANGLEOFTHEREFERENCEPATHISCONSTANTINSTRAIGHTSEGMENTSSTEPINPUTANDINCREASESCONSTANTLYINCURVESWITHFIXEDRADIUSRAMPINPUTTHELINETRACKINGROBOTCANBECONSIDEREDASATYPE1SYSTEMTHESAMEHAPPENSWITHTHEPROPORTIONALCONTROLLER33PROPORTIONALINTEGRALDERIVATIVETHISTYPEOFCONTROLLER,KNOWNASPID,RESULTSFROMTHEPREVIOUSONEBYADDINGANINTEGRALTERMTOTHEACTUATINGSIGNALTHISALLOWSTOBRINGTHEDEVIATIONTOZEROOVERANYPARTOFTHELINE,EITHERSTRAIGHTORCURVETHEDEBLATION00,02004006008001000002TIMESAMPLINGINTONALSFIGURE8USINGAPDCONTROLLERWITHKP400ANDK380545CANBEKEPTVERYSMALLWHENTHERIGHTPARAMETERSAREUSEDALTHOUGHITALWAYSINCREASESINTHEBEGINNINGANDENDINGOFANYCURVETHECONTROLLEROUTPUTISVDL,KPEKDCEKIIEWITHKP200,KP200ANDK,LOOITWASPOSSIBLETODECREASETHEIAE78ANDTHEMAXIMUMABSOLUTEERROR25MMNOATTEMPTWASDONETOFINDTHEBEST3VALUESANYWAYTHERESULTSAREBETTERTHANWITHTHENONOPTIMISEDPDCONTROLLERALTHOUGHCONTROLLERSOFTHISTYPENORMALLYACHIEVEAGOODPERFORMANCE,THETUNINGOFTHE3CONSTANTSISVERYDIFFICULTTHEUSEOFNONOPTIMALCONSTANTSMAYCAUSEACONSIDERABLEDEGRADATIONINPERFORMANCE34FUZZYLOGICAPPROACHTHEFUZZYLOGICAPPROACHCANBEANALTERNATIVETOTHEPREVIOUSSTRATEGIESALTHOUGHITISMORECOMPLEXTHANEITHERP,PDORPIDAPPROACHES,ITISSTILLRELATIVELYEASYTOIMPLEMENTSINCEITISBASEDONINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMER4INTHISCASEAFUZZYINCREMENTALCONTROLLERWITHNORMALISEDUNIVERSESOFDISCOURSEANDGAUSSIANMEMBERSHIPFUNCTIONSISUSED51THECONTROLLERINPUTSARETHETRAJECTORYERROREANDITSDERIVATIVECETHECONTROLLEROUTPUTISTHEDIFFERENTIALVOLTAGEVDIPTHEFUZZYCONTROLSURFACECANBEDEPICTEDONFIGURE9NOTETHENONLINEARSURFACEANDTHEGRADIENTNEARTHECENTERTWOAPPROACHESWERETRIEDWITHTHLSTYPEOFCONTROLLERRULEBASEDANDTABLEBASEDALGORITHMTHEFIRSTONEUSESFUNCTIONSFROMTHEMATHWORKSFUZZYLOGICTOOLBOXTHESECONDISONLYA2DLOOKUPTABLETHERESULTSAREIDENTICALINTERMSOFIAE,ISEANDMAXIMUMABSOLUTEERRORSOMEBETTERRESULTSWEREOBTAINEDADDINGALINEARINTEGRALTERMTOTHEFUZZYALGORITHMSEETABLE1FOR11FIGURE9FUZZYCONTROLSURFACEDETAILSHOWEVERTHERESULTSWEREALITTLEBITMOREMODESTTHANTHEONESOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERTRYINGTOIMPROVETHESERESULTSLEADTOTHEUSEOFASELFORGANISINGFUZZYCONTROLLER35SELFORGANISINGFUZZYAPPROACHTHESELFORGANISINGFUZZYCONTROLLERSOCUSESSOMEKINDOFPERFORMANCEMEASURETOUPDATETHERULEBASETHEMOSTCOMMONAPPROACHHASAHIERARCHICALSTRUCTUREINWHICHTHELOWERLEVELISATABLEBASEDCONTROLLERTHEHIGHERLEVELMONITORSTHEERRORANDTHECHANGEINERRORANDMODIFIESTHETABLE,WHENNECESSARY,THROUGHAMODIFIERALGORITHM6THEPERFORMANCEMEASUREMENTISCARRIEDOUTUSINGEXPRESSION2PISTHEPERFORMANCEMEASUREORTHEPENALTY,THATISADDEDTOTHECONTROLTABLE,EISTHEERRORANDCEISTHECHANGEINERRORKCEISATIMECONSTANTANDGPISTHELEARNINGRATEFACTORSTARTINGWITHATABLESIMILARTOTHEONEUSEDONTHETABLEBASEDCONTROLLERITISPOSSIBLE,AFTER10TRAININGSESSIONSOFONEFULLREFERECEPATHEACH,TOIMPROVETHEOVERALLPERFORMANCEUPTOTHEONEOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERFIGURE10SHOWSTHEIAEEVOLUTIONALONGTHE10TRAININGSESSIONSNOTETHATTHETRAININGOCCURS“ONLINE“WHILETHEROBOTISACTUALLYMOVINGALONGTHELINEASWELLASWITHTHESIMPLEFUZZYAPPROACHES,THEADDITIONOFANINTEGRALACTIONTOTHESOCALLOWSTOACHIEVEEVENBETTERRESULTSASCANBESEENINTABLE136NEURALNETWORKSAPPROACHKNOWINGTHATTHEROBOTMODELPREDICTSNONLINEAR,IAEEVOLDONTRAPCTONMSFIGURE10SELFORGANISINGCONTROLLERIAEEVOLUTION546STABLE,DYNAMICBEHAVIOURLEADTOTHEIDEAOFUSINGSOMEKINDOFNEURALNETWORKAPPROACHINORDERTOIMPLEMENTADIRECTINVERSECONTROLALGORITHMTHEINVERSEMODELWASIDENTIFIEDBYTHEUSEOFA2LAYERFEEDFORWARDNETWORKWITH4INPUTS,8HIDDENNONLINEARNEURONSANDALINEAROUTPUTNEURONTHENETWORKWASTRAINEDOFFLINEWITHTHELEVENBERGMARQUARDTMETHOD7AND,AFTER5000EPOCHS,ITWASPOSSIBLETOGETA“GOOD“INVERSEMODELWITHTHEOBTAINEDNETWORKADIRECTINVERSECONTROLSCHEMEWASIMPLEMENTEDSITHERESULTSOBTAINEDTHISWAYARETHEBESTONESAMONGTHECOMPAREDCONTROLSTRATEGIESASCANBESEENINTABLE14CONCLUSIONSTABLE1PRESENTSTHERESULTSOBTAINEDWITHEACHCONTROLLINGAPPROACHTWOMAINSORTSOFCONTROLLERSWEREUSED,THOSECAPABLEOFLEARNINGSOC,SOCIANDNNANDTHEREMAININGONESFROMTHESELATTERONESITISPOSSIBLETOSEETHATTHEUSEOFFUZZYCONTROLLERSDOESNOTBRINGALONGANIMMEDIATEBENEFITASIMPLE“HANDTUNED“PDCONTROLLERPERFORMSBETTERWHENANINTEGRALCOMPONENTISADDEDTOTHEFUZZYCONTROLLERS,THEIRPERFORMANCEISIMPROVEDUPTOTHEONEOFTHEPDCONTROLLERHOWEVER,THEV,PARAMETERISSTILLSUPERIORINTHEPDAPPROACHNOTICETHATADIFFERENCEOF003MSYIELDSADIFFERENCEOF10SAFTER30MOPTIMALLYTUNINGAPDCONTROLLERISEITHERVERYDIFFICULTHIGHLYTIMECONSUMINGOREVENIMPOSSIBLEWHENTHEREISNOANALYTICALMODELOFTHEROBOTANDTHETUNINGHASTOBEDONEWITHTHEREALROBOTTHEPIDAPPROACHISALSODIFFICULTTOTUNEAND,INMANYCASES,THERESULTINGPERFORMANCEMAYEVENBEWORSETHANFORTHEPDTHETUNINGOFTHEFUZZYCONTROLLERSISEASIERTOACHIEVESINCEITISEMBEDDEDINTHEINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMERRULEBASEDAPPROACHORINTHETABLETABLE1COMPARINGDIFFERENTCONTROLSTRATEGIESTOTRACKANUNKNOWNLINECONTROLLZRIAEISEVMEANEMAX/IAE/PP15103303000491PDPDOPTIMIZEDPIDFUZZYFUZZYIFUZZYTABLEFUZZYTABLEISOC10EPOCHSSOCI15EPOCHSNNSO00EPOCHS9501403200333766007030002356780090310025481080210310051289501402900373710702103100532995013029003437660070310024566200603000215952004031002166BUILTFROMSUCHRULESTABLEBASEDAPPROACHCONCERNINGTHECONTROLLERSCAPABLEOFLEARNING,THESOCPRESENTSAGOODSTRATEGYTOIMPROVEPERFORMANCEWITHARELATIVELYLOWCOMPUTATIONALCOSTBESIDES,ITSONLINELEARNINGCAPABILITYASWELLASITSSPEEDOFLEARNINGMAKEITVERYATRACTIVETHENEURALNETBASEDAPPROACHISVERYPOWERFULBUTVERYTIMECONSUMINGOFFLINETRAININGANDREQUIRINGLARGECOMPUTATIONALRESOURCESFLOATINGPOINTCALCULATIONSTHUS,ITISNOTWELLSUITEDTOBEUSEDWITHLOWPROCESSINGPOWERMICROCONTROLLERSTHEAUTHORSARECURRENTLYWORKING,TOGETHERWITHSTUDENTS,INTHECONSTRUCTIONOFANEWLINETRACKI
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
2:不支持迅雷下载,请使用浏览器下载
3:不支持QQ浏览器下载,请用其他浏览器
4:下载后的文档和图纸-无水印
5:文档经过压缩,下载后原文更清晰
|