3comparing control strategies for automomous line-tracking robots.pdf

机器人五自由度机器人结构设计(全套含CAD图纸)

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图
编号:9554081    类型:共享资源    大小:2.17MB    格式:ZIP    上传时间:2018-03-14 上传人:机****料 IP属地:河南
45
积分
关 键 词:
机器人 自由度 结构设计 全套 cad 图纸
资源描述:


内容简介:
COMPARINGCONTROLSTRATEGIESFORAUTONOMOUSLINETRACKINGROBOTSLUISALMEIDA,ALEXANDREMOTA,PEDROFONSECAIDA,ALEX,PJTIAPTDEPARTAMENTODEELECTRONICAETELECOMUNICA5ESUNIVERSIDADEDEAVEIRO,P3810AVEIRO,PORTUGALTEL35134370859FAX35134381128ABSTRACTAUTONOMOUSMOBILEROBOTICSISAVERYEXCITINGAREAFORSTUDENTSPARTICULARLYFORTHOSEWHOATTENDCOURSESONELECTRONICSTHEAUTHORSHAVEBEENINVOLVEDINSEVERALACTIVITIESINTHISAREATOGETHERWITHSTUDENTSOFTHEUNIVERSITYOFAVEIROINPARTICULAR,ONEOFSTICHACTIVITIESISTOBUILDROBOTSTOFOLLOWALINEDRAWNONTHEJLOORINORDERTODOTHISEFFICIENTLYASIMULATORHASBEENIMPLEMENTEDANDUSEDTOTESTTHEINFLUENCEOFDIFFERENTCONTROLAPPROACHESTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEMATLABBASEDROBOTMODELANDLINETRACKINGSIMULATORITTHENCOMPARESSEVERALDRFFERENTCONTROLAPPROACHESINTERMSOFRESTILTINGINTEGRALABSOLUTEERRORIAEANDINTEGRALSQUAREDERRORISE,EASINESSOFTUNINGANDCOMPLEXIFYOFTHERESPECTIVECODETHECOMPAREDAPPROACHESAREPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FZZY,TABLEBASEDFUZZY,SELFORGANISINGFIIZZYANDNEURALNETINVERSEMODELBASED1INTRODUCTIONBUILDINGAUTONOMOUSROBOTSISANINTERDISCIPLINARYACTIVITYANDTHUSHASAGREATPEDAGOGICALVALUEWITHTHISFACTINMINDTHEAUTHORSHAVEBEENSUPPORTINGSTUDENTTEAMSFROMTHEUNIVERSITYPFAVEIROTOPARTICIPATEINANANNUALEVENTTHATTAKESPLACESINFRANCEWHERE,BASICALLY,AUTONOMOUSMOBILEROBOTSHAVETOFOLLOWALINE,AMONGSTOTHERTASKSTOBETTERUNDERSTANDTHEBEHAVIOUROFTHELINETRACKINGROBOTANDTOSHOWSTUDENTSHOWDIFFERENTSCIENTIFICCONCEPTSFROMPHYSICS,GEOMETRY,ELECTRONICS,INSTRUMENTATIONANDCONTROLAREINTEGRATEDWHENBUILDINGSUCHAROBOT,THEAUTHORSHAVEDEVELOPEDANANALYTICAL0780344847198I100001998IEEE542MODELOFTHELINEFOLLOWINGROBOTLTHEMODELTAKESINTOACCOUNTSEVERALREALWORLDCONSTRAINTSANDALLOWSTOPREDICTTHEMOVEMENTOFTHEROBOTBASEDONTHEELECTRICALVOLTAGESAPPLIEDTOTHEMOTORSALSOINLTHEAUTHORSHAVEDESCRIBEDTHEGEOMETOFTHELINETRACKINGPROCESSWHICHWASUSEDTOBUILDASIMULATORTHISALLOWEDTODETERMINETHEPATHOFTHEROBOTASWELLASTHERELATIONSHIPBETWEENTHISPATHANDTHEREFERENCEPATHTHATTHEROBOTISTOFOLLOWTHESIMULATORISAVALUABLETOOLTOCOMPAREDIFFERENTCONTROLAPPROACHES,ASWELLASDIFFERENTSENSORLAYOUTS,PRIORTOTHEROBOTCONSTRUCTIONTHISALLOWSFORBETTERDECISIONSCONCERNINGTHEPHYSICALPROPERTIESOFTHEROBOTBEFOREACTUALLYBUILDINGITINTHENEXTSECTIONTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEROBOTMODELANDOFTHESIMULATORINSECTION3SEVERALCONTROLAPPROACHESARECOMPARED,NAMELYPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FUZZY,TABLEBASEDFUZZY,SELFORGANISINGFUZZYANDNEURALNETINVERSEMODELBASEDCONCLUSIONSAREDRAWNINSECTION4WHICHALSOINCLUDESSOMECOMMENTSCONCERNINGONGOINGWORK2SIMULATINGTHEROBOT21THEROBOTMODELTHEROBOTSWHICHHAVEBEENBUILTBYTHESTUDENTSINTHEACTIVITIESMENTIONEDBEFOREARENORMALLYSIMPLEFIG1MOTIONISACHIEVEDBYUSINGTWOINDEPENDENTDCELECTRICMOTORSTHATDRIVEONEWHEELEACHDIFFERENTIALDRILEI5USEDTOSTEERTHEROBOTONEORTWOEXTRACASTERWHEELSAREAMC98COIMBRAUSEDTOKEEPTHEROBOTHORIZONTALLYTHEDEVIATIONOFTHEROBOTFROMTHEREFERENCEPATHISMEASUREDBYASETOFSENSORSPLACEDAHEADOFTHEROBOTWHICHARE,NORMALLY,INFRAREDLIGHTDETECTORSTYPICALLY,CLOSEDLOOPCONTROLOFTHEWHEELSVELOCITYHASNOTBEENDONETHEVELOCITYOFEACHWHEELISCONTROLLEDINDIRECTLYBYAPPLYINGVOLTAGESTOTHEMOTORSTHISOPTIONMAYDECREASETHEPERFORMANCEOFTHETRACKINGALGORITHMBUTSIMPLIFIESTHEFINALTUNINGREMEMBERTHATTHEUSEOFCLOSEDLOOPWHEELSPEEDCONTROLWOULDREQUIRETHETUNINGOFTWOEXTRAINDEPENDENTLOOPSFIGURE1THEBASICROBOTTHESECHARACTERISTICSHAVEBEENUSEDTODERIVEAMODELFORTHELINETRACKINGROBOTFIG2TOIMPROVEITSACCURACYTHEMODELTAKESINTOACCOUNTINERTIAMASSMANDMOMENTOFINERTIAA,FRICTIONCOEFFICIENTSFORTRANSLATIONALBYANDROTATIONALB,MOVEMENTS,ELECTRICMOTORSPARAMETERSTHERESISTANCERANDTHEMOTORCONSTANTKM,ADDITIVENOISEINTHESENSORREADINGSANDPHYSICALLIMITATIONSOFTHEROBOTSUCHASTHELENGTHOFTHELINESENSORS5ANDTHEMAXIMUMVOLTAGETHATCANBEAPPLIEDTOTHEMOTORSV“THEMODELISDESCRIBEDINLANDALLOWSTOCALCULATEBOTHLINEARVANDANGULAR0VELOCITIESOFTHEROBOTBASEDONTHEVOLTAGESAPPLIEDTOTHEMOTORSVOWAVERAGE,ANDV,DIFFERENTIAL22THELINETRACKINGSIMULATORTHEROBOTMODELREFERREDTOABOVE,WASCOMPLEMENTEDWITHAGEOMETRICANALYSISOFTHELINETRACKINGPROBLEMTHISPROBLEMFALLSWITHINTHEGENERALPATHTRACKINGPROBLEMWHICHHASBEENTREATEDINTHELITERATURE,EG2INPARTICULAR,THESIMULATORPRESENTEDINTHISARTICLEFOLLOWSAREACTIVEAPPROACHTOTRACKANUNKNOWNLINEASOPPOSEDTOTHEPLANNINGAPPROACHOFTRACKINGAPATHPREVIOUSLYPLANNEDANDTHUS,KNOWNINADVANCEINLAGEOMETRICANALYSISISALSOSHOWNTHATALLOWSTOCALCULATETHENEXTDEVIATIONFROMTHELINEEBASEDONTHEPRESENTDEVIATION,WHEELSVELOCITIESANDANGULARPOSITIONOFTHEROBOTRELATIVETOTHELINETHEROBOTISUSEDASREFERENTIALHOWEVER,INORDERTOBETTERDEFINETHEREFERENCETRAJECTORYANDTOVISUALISETHEROBOTTRAJECTOQ,ANOTHERMODELWASBUILTINWHCHTHEROBOTPOSITIONWASREFERREDTOANABSOLUTEREFERENTIALINTHISGEOMETRICMODEL,THENEXTDEVIATIONFROMTHELINEEISCALCULATEDBASEDONTHEROBOTABSOLUTEPOSITIONANDTHEWHEELSVELOCITIESKNOWINGTHEROBOTPOSITIONXO,YO,ARITISPOSSIBLETOCALCULATETHEINTERSECTIONOFTHESENSORARRAYWITHTHELINEXEY,WHICHTHENALLOWSTOCALCULATETHEDEVIATIONEFIG3THERESULTINGDEPENDENCYOFERELATIVETOTHEPOSITIONOFTHEROBOTISNONLINEARTHEVELOCITIESAREUSEDTOCALCULATETHEROBOTDISPLACEMENTDZ,DA,DURINGANINFINITESIMALTIMEINTERVAL200WASFOUNDTHATBESTRESULTSWEREOBTAINEDWITHK,TOOANDKP380FIGURE8SHOWSTHEDEVIATIONOBTAINEDALONGTHEREFERENCEPATHWITHTHESEVALUESTHEABSOLUTEMAXIMUMDEVIATIONIS23MMANDTHEIAEIS66ANOTEWORTHREFERRINGISTHEFACTTHATTHECONTROLLERISCAPABLEOFCONVERGINGTOZERODEVIATIONOVERSTRAIGHTSEGMENTSBUTINCURVESWITHCONSTANTRADIUS,THEDEVIATIONCONVERGESTOANONZEROVALUESINCETHEANGLEOFTHEREFERENCEPATHISCONSTANTINSTRAIGHTSEGMENTSSTEPINPUTANDINCREASESCONSTANTLYINCURVESWITHFIXEDRADIUSRAMPINPUTTHELINETRACKINGROBOTCANBECONSIDEREDASATYPE1SYSTEMTHESAMEHAPPENSWITHTHEPROPORTIONALCONTROLLER33PROPORTIONALINTEGRALDERIVATIVETHISTYPEOFCONTROLLER,KNOWNASPID,RESULTSFROMTHEPREVIOUSONEBYADDINGANINTEGRALTERMTOTHEACTUATINGSIGNALTHISALLOWSTOBRINGTHEDEVIATIONTOZEROOVERANYPARTOFTHELINE,EITHERSTRAIGHTORCURVETHEDEBLATION00,02004006008001000002TIMESAMPLINGINTONALSFIGURE8USINGAPDCONTROLLERWITHKP400ANDK380545CANBEKEPTVERYSMALLWHENTHERIGHTPARAMETERSAREUSEDALTHOUGHITALWAYSINCREASESINTHEBEGINNINGANDENDINGOFANYCURVETHECONTROLLEROUTPUTISVDL,KPEKDCEKIIEWITHKP200,KP200ANDK,LOOITWASPOSSIBLETODECREASETHEIAE78ANDTHEMAXIMUMABSOLUTEERROR25MMNOATTEMPTWASDONETOFINDTHEBEST3VALUESANYWAYTHERESULTSAREBETTERTHANWITHTHENONOPTIMISEDPDCONTROLLERALTHOUGHCONTROLLERSOFTHISTYPENORMALLYACHIEVEAGOODPERFORMANCE,THETUNINGOFTHE3CONSTANTSISVERYDIFFICULTTHEUSEOFNONOPTIMALCONSTANTSMAYCAUSEACONSIDERABLEDEGRADATIONINPERFORMANCE34FUZZYLOGICAPPROACHTHEFUZZYLOGICAPPROACHCANBEANALTERNATIVETOTHEPREVIOUSSTRATEGIESALTHOUGHITISMORECOMPLEXTHANEITHERP,PDORPIDAPPROACHES,ITISSTILLRELATIVELYEASYTOIMPLEMENTSINCEITISBASEDONINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMER4INTHISCASEAFUZZYINCREMENTALCONTROLLERWITHNORMALISEDUNIVERSESOFDISCOURSEANDGAUSSIANMEMBERSHIPFUNCTIONSISUSED51THECONTROLLERINPUTSARETHETRAJECTORYERROREANDITSDERIVATIVECETHECONTROLLEROUTPUTISTHEDIFFERENTIALVOLTAGEVDIPTHEFUZZYCONTROLSURFACECANBEDEPICTEDONFIGURE9NOTETHENONLINEARSURFACEANDTHEGRADIENTNEARTHECENTERTWOAPPROACHESWERETRIEDWITHTHLSTYPEOFCONTROLLERRULEBASEDANDTABLEBASEDALGORITHMTHEFIRSTONEUSESFUNCTIONSFROMTHEMATHWORKSFUZZYLOGICTOOLBOXTHESECONDISONLYA2DLOOKUPTABLETHERESULTSAREIDENTICALINTERMSOFIAE,ISEANDMAXIMUMABSOLUTEERRORSOMEBETTERRESULTSWEREOBTAINEDADDINGALINEARINTEGRALTERMTOTHEFUZZYALGORITHMSEETABLE1FOR11FIGURE9FUZZYCONTROLSURFACEDETAILSHOWEVERTHERESULTSWEREALITTLEBITMOREMODESTTHANTHEONESOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERTRYINGTOIMPROVETHESERESULTSLEADTOTHEUSEOFASELFORGANISINGFUZZYCONTROLLER35SELFORGANISINGFUZZYAPPROACHTHESELFORGANISINGFUZZYCONTROLLERSOCUSESSOMEKINDOFPERFORMANCEMEASURETOUPDATETHERULEBASETHEMOSTCOMMONAPPROACHHASAHIERARCHICALSTRUCTUREINWHICHTHELOWERLEVELISATABLEBASEDCONTROLLERTHEHIGHERLEVELMONITORSTHEERRORANDTHECHANGEINERRORANDMODIFIESTHETABLE,WHENNECESSARY,THROUGHAMODIFIERALGORITHM6THEPERFORMANCEMEASUREMENTISCARRIEDOUTUSINGEXPRESSION2PISTHEPERFORMANCEMEASUREORTHEPENALTY,THATISADDEDTOTHECONTROLTABLE,EISTHEERRORANDCEISTHECHANGEINERRORKCEISATIMECONSTANTANDGPISTHELEARNINGRATEFACTORSTARTINGWITHATABLESIMILARTOTHEONEUSEDONTHETABLEBASEDCONTROLLERITISPOSSIBLE,AFTER10TRAININGSESSIONSOFONEFULLREFERECEPATHEACH,TOIMPROVETHEOVERALLPERFORMANCEUPTOTHEONEOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERFIGURE10SHOWSTHEIAEEVOLUTIONALONGTHE10TRAININGSESSIONSNOTETHATTHETRAININGOCCURS“ONLINE“WHILETHEROBOTISACTUALLYMOVINGALONGTHELINEASWELLASWITHTHESIMPLEFUZZYAPPROACHES,THEADDITIONOFANINTEGRALACTIONTOTHESOCALLOWSTOACHIEVEEVENBETTERRESULTSASCANBESEENINTABLE136NEURALNETWORKSAPPROACHKNOWINGTHATTHEROBOTMODELPREDICTSNONLINEAR,IAEEVOLDONTRAPCTONMSFIGURE10SELFORGANISINGCONTROLLERIAEEVOLUTION546STABLE,DYNAMICBEHAVIOURLEADTOTHEIDEAOFUSINGSOMEKINDOFNEURALNETWORKAPPROACHINORDERTOIMPLEMENTADIRECTINVERSECONTROLALGORITHMTHEINVERSEMODELWASIDENTIFIEDBYTHEUSEOFA2LAYERFEEDFORWARDNETWORKWITH4INPUTS,8HIDDENNONLINEARNEURONSANDALINEAROUTPUTNEURONTHENETWORKWASTRAINEDOFFLINEWITHTHELEVENBERGMARQUARDTMETHOD7AND,AFTER5000EPOCHS,ITWASPOSSIBLETOGETA“GOOD“INVERSEMODELWITHTHEOBTAINEDNETWORKADIRECTINVERSECONTROLSCHEMEWASIMPLEMENTEDSITHERESULTSOBTAINEDTHISWAYARETHEBESTONESAMONGTHECOMPAREDCONTROLSTRATEGIESASCANBESEENINTABLE14CONCLUSIONSTABLE1PRESENTSTHERESULTSOBTAINEDWITHEACHCONTROLLINGAPPROACHTWOMAINSORTSOFCONTROLLERSWEREUSED,THOSECAPABLEOFLEARNINGSOC,SOCIANDNNANDTHEREMAININGONESFROMTHESELATTERONESITISPOSSIBLETOSEETHATTHEUSEOFFUZZYCONTROLLERSDOESNOTBRINGALONGANIMMEDIATEBENEFITASIMPLE“HANDTUNED“PDCONTROLLERPERFORMSBETTERWHENANINTEGRALCOMPONENTISADDEDTOTHEFUZZYCONTROLLERS,THEIRPERFORMANCEISIMPROVEDUPTOTHEONEOFTHEPDCONTROLLERHOWEVER,THEV,PARAMETERISSTILLSUPERIORINTHEPDAPPROACHNOTICETHATADIFFERENCEOF003MSYIELDSADIFFERENCEOF10SAFTER30MOPTIMALLYTUNINGAPDCONTROLLERISEITHERVERYDIFFICULTHIGHLYTIMECONSUMINGOREVENIMPOSSIBLEWHENTHEREISNOANALYTICALMODELOFTHEROBOTANDTHETUNINGHASTOBEDONEWITHTHEREALROBOTTHEPIDAPPROACHISALSODIFFICULTTOTUNEAND,INMANYCASES,THERESULTINGPERFORMANCEMAYEVENBEWORSETHANFORTHEPDTHETUNINGOFTHEFUZZYCONTROLLERSISEASIERTOACHIEVESINCEITISEMBEDDEDINTHEINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMERRULEBASEDAPPROACHORINTHETABLETABLE1COMPARINGDIFFERENTCONTROLSTRATEGIESTOTRACKANUNKNOWNLINECONTROLLZRIAEISEVMEANEMAX/IAE/PP15103303000491PDPDOPTIMIZEDPIDFUZZYFUZZYIFUZZYTABLEFUZZYTABLEISOC10EPOCHSSOCI15EPOCHSNNSO00EPOCHS9501403200333766007030002356780090310025481080210310051289501402900373710702103100532995013029003437660070310024566200603000215952004031002166BUILTFROMSUCHRULESTABLEBASEDAPPROACHCONCERNINGTHECONTROLLERSCAPABLEOFLEARNING,THESOCPRESENTSAGOODSTRATEGYTOIMPROVEPERFORMANCEWITHARELATIVELYLOWCOMPUTATIONALCOSTBESIDES,ITSONLINELEARNINGCAPABILITYASWELLASITSSPEEDOFLEARNINGMAKEITVERYATRACTIVETHENEURALNETBASEDAPPROACHISVERYPOWERFULBUTVERYTIMECONSUMINGOFFLINETRAININGANDREQUIRINGLARGECOMPUTATIONALRESOURCESFLOATINGPOINTCALCULATIONSTHUS,ITISNOTWELLSUITEDTOBEUSEDWITHLOWPROCESSINGPOWERMICROCONTROLLERSTHEAUTHORSARECURRENTLYWORKING,TOGETHERWITHSTUDENTS,INTHECONSTRUCTIONOFANEWLINETRACKI
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机器人五自由度机器人结构设计(全套含CAD图纸)
链接地址:https://www.renrendoc.com/p-9554081.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!