




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ControlEngineeringPracticeembeddedVrancLjubljana,bNovaGoricaPolytechnic,NovaGorica,Sloveniaidenticationstepstoprovidereliableoperation.Thecontrollermonitorsandevaluatesthecontrolperformanceoftheclosed-loopsystem.Thecontrollerwasimplementedonaprogrammablelogiccontroller(PLC).Theperformanceisillustratedonaeldtestinindustrialapplications,assummarisedbelow:ARTICLEINPRESS/locate/conengpracC3Correspondingauthor.Tel.:+38614773994;1.Becauseofthediversityofreal-lifeproblems,asinglenonlinearcontrolmethodhasarelativelynarrow0967-0661/$-seefrontmatterr2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.conengprac.2005.05.006fax:+38614257009.E-mailaddress:samo.gerksicijs.si(S.Gerksic).applicationforcontrolofpressureonahydraulicvalve.r2005ElsevierLtd.Allrightsreserved.Keywords:Controlengineering;Fuzzymodelling;Industrialcontrol;Model-basedcontrol;Nonlinearcontrol;Programmablelogiccontrollers;Self-tuningregulators1.IntroductionModerncontroltheoryoffersmanycontrolmethodstoachievemoreefcientcontrolofnonlinearprocessesthanprovidedbyconventionallinearmethods,takingadvantageofmoreaccurateprocessmodels(Bequette,1991;Henson&Seborg,1997;Murray-Smith&Johansen,1997).Surveys(Takatsu,Itoh,&Araki,1998;Seborg,1999)indicatethatwhilethereisaconsiderableandgrowingmarketforadvancedcon-trollers,relativelyfewvendorsofferturn-keyproducts.Excellentresultsofadvancedcontrolconcepts,basedonfuzzyparameterscheduling(Tan,Hang,&Chai,1997;Babuska,Oosterhoff,Oudshoorn,&Bruijn,2002),multiple-modelcontrol(Dougherty&Cooper,2003;Gundala,Hoo,&Piovoso,2000),andadaptivecontrol(Henson&Seborg,1994;Hagglund&Astrom,2000),havebeenreportedintheliterature.However,thereareseveralrestrictionsforapplyingthesemethodsdINEAd.o.o.,Ljubljana,SloveniaeComputerTechnologyInstitute,Athens,GreecefUniversityofChemicalTechnologyandMetallurgySofia,Sofia,BulgariaReceived23April2004;accepted15May2005AbstractThispaperpresentsaninnovativeself-tuningnonlinearcontrollerASPECT(advancedcontrolalgorithmsforprogrammablelogiccontrollers).Itisintendedforthecontrolofhighlynonlinearprocesseswhosepropertieschangeradicallyoveritsrangeofoperation,andincludesthreeadvancedcontrolalgorithms.Itisdesignedusingtheconceptsofagent-basedsystems,appliedwiththeaimofautomatingsomeofthecongurationtasks.Theprocessisrepresentedbyasetoflow-orderlocallinearmodelswhoseparametersareidentiedusinganonlinelearningprocedure.Thisprocedurecombinesmodelidenticationwithpre-andpost-cUniversityofLjubljana,FacultyofElectricalEngineering,Ljubljana,SloveniaAdvancedcontrolalgorithmslogiccontrollerSamoGerksica,C3,GregorDolanca,DamirSasoBlazicc,IgorSkrjancc,ZoranMarinsRobertKinge,MinchoHadjiskiaJozefStefanInstitute,inaprogrammableica,JusKocijana,b,StankoStrmcnika,ekd,MihaBozicekd,AnnaStathakie,f,KostaBoshnakovfSlovenia()friendmaticindustfromling,procedcontrollermonitorstheresultingcontrolperformanceARTICLEINPRESSanonlinearprocessmodel.Themodelisobtainedoperatingprocesssignalsbyexperimentalmodel-usinganovelonlinelearningprocedure.ThisThefromforimplementationonPLCoropencontrollerrialhardwareplatforms.controllerparametersareautomaticallytunedfeatuadaptedssioningofthecontrollerissimpliedbyauto-experimentationandtuning.AdistinguishingreofthecontrolleristhatthealgorithmsaremetecommiTheASPECTcontrollerisanefcientanduser-lyengineeringtoolforimplementationofpara-r-schedulingcontrolintheprocessindustry.Theused,thesensorreadings,specichardwareplatformsareetc.isdemandedtoeldofapplication.Therefore,moreexiblemethodsoratoolboxofmethodsarerequiredinindustry.2.Newmethodsareusuallynotavailableinaready-to-useindustrialform.Customdesignrequiresconsider-ableeffort,timeandmoney.3.Thehardwarerequirementsarerelativelyhigh,duetothecomplexityofimplementationandcomputationaldemands.4.Thecomplexityoftuning(Babuskaetal.,2002)andmaintenancemakesthemethodsunattractivetononspecialisedengineers.5.Thereliabilityofnonlinearmodellingisofteninquestion.6.Manynonlinearprocessescanbecontrolledusingthewell-knownandindustriallyprovenPIDcontroller.Aconsiderabledirectperformanceincrease(nancialgain)isdemandedwhenreplacingaconventionalcontrolsystemwithanadvancedone.Themain-tenancecostsofaninadequateconventionalcontrolsolutionmaybelessobvious.Theaimofthisworkistodesignanadvancedcontrollerthataddressessomeoftheaforementionedproblemsbyusingtheconceptsofagent-basedsystems(ABS)(Wooldridge&Jennings,1995).Themainpurposeistosimplifycontrollercongurationbypartialautomationofthecommissioningprocedure,whichistypicallyperformedbythecontrolengineer.ABSsolvedifcultproblemsbyassigningtaskstonetworkedsoftwareagents.Thesoftwareagentsarecharacterisedbypropertiessuchasautonomy(operationwithoutdirectinterventionofhumans),socialability(interactionwithotheragents),reactivity(perceptionandresponsetotheenvironment),pro-activeness(goal-directedbe-haviour,takingtheinitiative),etc.ThisworkdoesnotaddressissuesofABStheory,butrathertheapplicationofthebasicconceptsofABStotheeldofprocesssystemsengineering.Inthiscontext,anumberoflimitshavetobeconsidered.Forexample:initiativeisrestricted,ahighdegreeofreliabilityandpredictability,insightintotheproblemdomainislimitedS.Gerksicetal./ControlEngineerin2ureisbasedonmodelidenticationusingtheandreactstodetectedirregularities.Thecontrollercomprisestherun-timemodule(RTM)andthecongurationtool(CT).TheRTMrunsonaPLC,performingallthemainfunctionalityofreal-timecontrol,onlinelearningandcontrolperformancemonitoring.TheCT,usedonapersonalcomputer(PC)duringtheinitialcongurationphase,simpliesthecongurationprocedurebyprovidingguidanceanddefaultparametervalues.Theoutlineofthepaperisasfollows:Section2presentsanoverviewoftheRTMstructureanddescribesitsmostimportantmodules;Section3givesabriefdescriptionoftheCT;andnally,Section4describestheapplicationofthecontrollertoapilotplantwhereitisusedforcontrolofthepressuredifferenceonahydraulicvalveinavalvetestapparatus.2.Run-TimeModuleTheRTMoftheASPECTcontrollercomprisesasetofmodules,linkedintheformofamulti-agentsystem.Fig.1showsanoverviewoftheRTManditsmainmodules:thesignalpre-processingagent(SPA),theonlinelearningagent(OLA),themodelinformationagent(MIA),thecontrolalgorithmagent(CAA),thecontrolperformancemonitor(CPM),andtheoperationsupervisor(OS).2.1.Multi-facetedmodel(MFM)TheASPECTcontrollerisbasedonthemulti-facetedmodelconceptproposedbyStephanopoulus,Henning,andLeone(1990)andincorporatesseveralmodelformsrequiredbytheCAAandtheOLA.Specically,theMFMincludesasetoflocalrst-andsecond-orderlocallearningapproach(Murray-Smith&Johansen,1997,p.188).Themeasurementdataareprocessedbatch-wise.Additionalstepsareperformedbeforeandafteridenticationinordertoimprovethereliabilityofmodelling,comparedtoadaptivemethodsthatuserecursiveidenticationcontinuously(Hagglund&As-trom,2000).Thenonlinearmodelcomprisesasetoflocallow-orderlinearmodels,eachofwhichisvalidoveraspeciedoperatingregion.Theactivelocalmodel(s)isselectedusingaconguredschedulingvariable.Thecontrollerisspecicallydesignedforsingle-input,single-outputprocessesthatmayincludeameasureddis-turbanceusedforfeed-forward.Additionally,theapplicationrangeofthecontrollerdependsontheselectedcontrolalgorithm.Amodularstructureofthecontrollerpermitsuseofarangeofcontrolalgorithmsthataremostsuitablefordifferentprocesses.ThegPractice()discrete-timelinearmodelswithtimedelayandoffset,ARTICLEINPRESSS.Gerksicetal./ControlEngineerinwhicharespeciedbyagivenschedulingvariables(k).Themodelequationofrstorderlocalmodelsisyk1C0a1;jykb1;jukC0dujc1;jvkC0dvjrj,(1)whilethemodelequationofsecondordermodelsisyk1C0a1;jykC0a2;jykC01b1;jukC0dujb2;jukC01C0dujc1;jvkC0dvjc2;jvkC01C0dvjrj,2wherekisthediscretetimeindex,jisthenumberofthelocalmodel,y(k)istheprocessoutputsignal,u(k)istheprocessinputsignal,v(k)istheoptionalmeasureddisturbancesignal(MD),duisthedelayinthemodelbranchfromutoy,dvisthedelayinthemodelbranchfromvtoy,andai,j,bi,j,ci,jandrjaretheparametersofthejthlocalmodel.ThesetoflocalmodelscanbeinterpretedasaTakagiSugenofuzzymodel,whichinthecaseofasecondordermodelcanbeexpressedintheFig.1.Run-timemodulegPractice()3followingform:yk1C0Xmj1bjka1;jykC0Xmj1bjka2;jykC01Xmj1bjkb1;jukC0dujXmj1bjkb2;jukC01C0dujXmj1bjkc1;jnkC0dnjXmj1bjkc2;jnkC01C0dnjXmj1bjkrj,3wherebj(k)isthevalueofthemembershipfunctionofthejthlocalmodelatthecurrentvalueoftheschedulingvariables(k).Normalisedtriangularmembershipfunc-tionsareused,asillustratedinFig.2.overview.ARTICLEINPRESSTheschedulingvariables(k)iscalculatedusingcoefcientskr,ky,ku,andkv,usingtheweightedsumskkrrkkyykkuukC01kvvk.(4)Thecoefcientsareconguredbytheengineeraccord-ingtothenatureoftheprocessnonlinearity.2.2.OnlineLearningAgent(OLA)TheOLAscansthebufferofrecentreal-timesignals,preparedbytheSPA,andestimatestheparametersofthelocalmodelsthatareexcitedbythesignals.ThemostrecentlyderivedparametersaresubmittedtotheMIAonlywhentheypassthevericationtestandareprovedtobebetterthantheexistingset.TheOLAisinvokedupondemandfromtheOSorautonomously,whenanintervaloftheprocesssignalswithsufcientexcitationisavailableforprocessing.Itprocessesthesignalsbatch-wiseandusingthelocallearningapproach.Anadvantageofthebatch-wiseconceptisthatthedecisiononwhethertoadaptthemodelisnotperformedinreal-timebutfollowingadelaythatallowsforinspectionoftheidenticationresultbeforeitisapplied.Thus,bettermeansforcontroloverdataselectionisprovided.Aproblemofdistributionofthecomputationtimerequiredforidenticationappearswithbatch-wiseprocessingofdata(opposedtotheonlinerecursiveprocessingthatistypicallyusedinadaptivecontrollers).Thisproblemisresolvedusingamulti-taskingoperationsystem.SincetheOLAtypicallyrequiresconsiderablyFig.2.FuzzymembershipfunctionsoflocalmodelsintheMFM.S.Gerksicetal./ControlEngineerin4morecomputationthanthereal-timecontrolalgorithm,itrunsinthebackgroundasalow-prioritytask.Thefollowingprocedure,illustratedinFig.3,isexecutedwhentheOLAisinvoked.2.2.1.CopysignalbufferThebufferofthereal-timesignalsismaintainedbytheSPA.WhentheOLAisinvoked,therelevantsectionofthebufferiscopiedforfurtherprocessing.2.2.2.ExcitationcheckAquickexcitationcheckisperformedatthestart,sothatprocessingofthesignalsisperformedonlywhentheycontainexcitation.Ifthestandarddeviationsofthesignalsr(k),y(k),u(k),andv(k)intheactivebufferarebelowtheirthresholds,theexecutioniscancelled.2.2.3.CopyactiveMFMfromMIATheonlinelearningprocedurealwayscomparesthenewlyidentiedlocalmodelswiththeprevioussetofparameters.Therefore,theactiveMFMiscopiedfromtheMIAwhereitisstored.Adefaultsetofmodelparametersisusedforthelocalmodelsthathavenotyetbeenidentied(seeSection2.3).2.2.4.SelectlocalmodelsAlocalmodelisselectedifthesumofitsmembershipfunctionsbj(k)overtheactivebuffernormalisedbytheactivebufferlengthexceedsagiventhreshold.Onlytheselectedlocalmodelsareincludedinfurtherprocessing.2.2.5.IdentificationThelocalmodelparametersareidentiedusingthefuzzyinstrumentalvariables(FIV)identicationmethoddevelopedbyBlazicetal.(2003).Itisanextensionofthelinearinstrumentalvariablesidenticationprocedure(Ljung,1987)forthespeciedMFM,basedonthelocallearningapproach(Murray-Smith&Johansen,1997).Thelocallearningapproachisbasedontheassumptionthattheparametersofalllocalmodelswillnotbeestimatedin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东石油化工学院《小学教育研究方法基础》2023-2024学年第二学期期末试卷
- 南阳职业学院《智能计算与最优化》2023-2024学年第二学期期末试卷
- 湖南城市学院《广告道德与法规》2023-2024学年第二学期期末试卷
- 潍坊环境工程职业学院《银行票据业务模拟》2023-2024学年第二学期期末试卷
- 内蒙古经贸外语职业学院《工程项目管理与建设法规》2023-2024学年第二学期期末试卷
- 安徽中澳科技职业学院《光纤通信》2023-2024学年第二学期期末试卷
- 东莞城市学院《劳动教育Ⅳ》2023-2024学年第二学期期末试卷
- 包头职业技术学院《中学语文微型课训练》2023-2024学年第二学期期末试卷
- 成都职业技术学院《环境化学(1)》2023-2024学年第二学期期末试卷
- 黑龙江大学《高聚物合成工艺及设备》2023-2024学年第二学期期末试卷
- 建筑设计防火要求规范2024修订版
- 2021年武汉中考数学试题(附答案)
- 精神卫生科普宣传活动方案
- 自杀风险C-SSRS评分量表
- 2024-2024学年湖北省武汉市洪山区八年级(下)期末数学试卷
- 规范会议记录培训课件
- GIS(地理信息系统)空间分析
- 《舞蹈艺术赏析》课件
- 2023电池租赁合同电子版
- 露营基地项目实施方案
- 面肌痉挛的健康宣教
评论
0/150
提交评论