已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录1翻译原文及译文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.错误!未定义书签。7.3AutomaticNoveltyDetection.错误!未定义书签。7.4ConclusionofAnalysisI-Visualisation.错误!未定义书签。8AnalysisII-SignatureAnalysis.错误!未定义书签。8.1ConstructingSignatures.错误!未定义书签。8.2VisualisingSignatures.错误!未定义书签。8.3ConclusionofAnalysisII-SignatureAnalysis.错误!未定义书签。9AnalysisIII-TemplateAnalysis.错误!未定义书签。9.1ConstructingaTemplateofNormality.错误!未定义书签。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.错误!未定义书签。9.3ConclusionofAnalysisIII-TemplateAnalysis.错误!未定义书签。10AnalysisIV-None-linearPrediction.错误!未定义书签。10.1NeuralNetworksforOn-LinePrediction.错误!未定义书签。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.错误!未定义书签。10.3ConclusionofAnalysisIV-Non-linearPrediction.错误!未定义书签。11OverallConclusion.错误!未定义书签。11.1Methodology.错误!未定义书签。11.2SummaryofTesults.错误!未定义书签。11.3FutureWork.错误!未定义书签。12AppendixA-NeuroScaleVisualisations.错误!未定义书签。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“landspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州安顺镇宁县总工会招聘工会社会工作者2人笔试考试参考题库及答案解析
- 2025内蒙古巴彦淖尔市磴口县公益性岗位招聘考试笔试模拟试题及答案解析
- 2026上海市东昌东校招聘笔试考试参考试题及答案解析
- 2026广东广州市从化区教育局招聘事业单位编制教师229人(第一次)笔试考试参考试题及答案解析
- 2025年新能源物流车辆轻量化车身选型与性能提升报告
- 2025年新能源行业企业组织架构调整与能源效率提升报告
- 南方公司2026年度第四批次一般管理岗社会招聘考试笔试模拟试题及答案解析
- 《JBT10322.3-2002 电工用树脂浸渍玻璃纤维网格第 3 部分:单项材料规范环氧玻璃纤维网格》(2026年)实施指南
- 《JBT9165.1-1998 工艺文件完整性》(2026年)实施指南
- 2025安徽黄山市黄山区特邀行政执法监督员选聘考试笔试模拟试题及答案解析
- 行星减速机原理课件讲解
- 2025秋季学期国开电大法学本科《国际私法》期末纸质考试案例分析题库珍藏版
- 贸易安全知识培训内容课件
- 第四讲-正确认识中国经济热点问题-2025秋版本-建设更高水平平安中国国家安全
- 2025年易驱变频器说明书
- 医院儿科简介
- 2025山东发展投资控股集团有限公司权属企业招聘4人笔试历年参考题库附带答案详解
- IPC7530A2017GuidelinesTemperatureProfilingMassSolderingProcessesReflowWave(IPC-7530A 2017 回流焊和波峰焊工艺温度曲线指南)
- 智能储能系统的自适应电压控制策略研究
- 医药销售月结合同范本
- 《新媒体节目主持策略与技巧》课件 第二章:新媒体节目主持人培养
评论
0/150
提交评论