




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录1翻译原文及译文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.错误!未定义书签。7.3AutomaticNoveltyDetection.错误!未定义书签。7.4ConclusionofAnalysisI-Visualisation.错误!未定义书签。8AnalysisII-SignatureAnalysis.错误!未定义书签。8.1ConstructingSignatures.错误!未定义书签。8.2VisualisingSignatures.错误!未定义书签。8.3ConclusionofAnalysisII-SignatureAnalysis.错误!未定义书签。9AnalysisIII-TemplateAnalysis.错误!未定义书签。9.1ConstructingaTemplateofNormality.错误!未定义书签。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.错误!未定义书签。9.3ConclusionofAnalysisIII-TemplateAnalysis.错误!未定义书签。10AnalysisIV-None-linearPrediction.错误!未定义书签。10.1NeuralNetworksforOn-LinePrediction.错误!未定义书签。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.错误!未定义书签。10.3ConclusionofAnalysisIV-Non-linearPrediction.错误!未定义书签。11OverallConclusion.错误!未定义书签。11.1Methodology.错误!未定义书签。11.2SummaryofTesults.错误!未定义书签。11.3FutureWork.错误!未定义书签。12AppendixA-NeuroScaleVisualisations.错误!未定义书签。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“landspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度冷链物流配送员专业能力培训服务合同
- 2025年跨境电商进口货物物流配送服务合同
- 饮品购销合同4篇
- 2025年度航空航天动力系统升级改造工程承揽协议
- 2025年跨行业债务清偿及企业重振专项服务协议
- 2025年度幼儿园保育员岗位聘任合同及专业成长培训方案
- 2025年协议离婚后财产分割与债务处理专业律师服务合同
- 2025年精密电子设备性能评估与预防性维护服务合同
- 2025年度财务数据整合与分析共享服务专项合同
- 2025年跨区域市场拓展与本地化营销调研合同
- 2025北京京剧院招聘工作人员10人笔试备考题库及答案解析
- 工商注册知识培训课件
- 隐患排查治理奖励制度
- 学校食堂清洗消毒工作流程培训测试题及答案
- 计算机组装及维护试题库附带答案总结全面
- 武汉公积金基本知识培训课件
- 校园消防安全知识培训主要内容
- 校园垃圾清运应急预案演练(3篇)
- 楼盘销售技巧培训课件
- 总装工艺基础知识培训课件
- 2025年血透室透析液污染应急预案演练脚本
评论
0/150
提交评论