




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Optics&LaserTechnology40ofInstitute1lossspeed.Keywords:Taguchimethod;Laserbeamcutting;Hybridapproachindustriestoachievecomplexshapes/profileswithclosemethodinwhichsheetmaterialiscutmainlyduetomeltingandvaporisation.Themoltenmaterialisejectedwiththehelpofhigh-pressureassistgasjet4.TheschematicoftheInmostoftheexperimentalinvestigationsoftheLBCresearchershaveincorporateddesignofexperimentsmethodologiessuchastheresponsesurfacemethodology(RSM)andTaguchimethodology(TM)duringexperi-ARTICLEINPRESSmentalstudyofLBCprocess.Tametal.11appliedtheTaguchimethodtostudythelasercuttingprocessfor4.5mmthickmildsteelsheet.The0030-3992/$-seefrontmatterr2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.optlastec.2007.09.002C3Correspondingauthor.Tel.:+915322271812;fax:+915322445101.E-mailaddress:(A.KumarDubey).tolerancesforcuttingofsteelsheets3.ThemostwidelyusedindustriallasersforcuttingofsheetmetalsaregaseousCO2andsolidstateNd:YAG.TherehasbeengrowinginterestinrecentyearsintheuseofpulsedNd:YAGlasersforprecisioncuttingofthinsheetmetalsbecauseofitshighintensity,lowmeanbeampower,goodfocusingcharacter-istics,andnarrowheataffectedzone(HAZ).LBCisathermalenergybasednon-conventionalcuttingprocess,researchershavevariedonefactoratatimetoanalysetheeffectofinputprocessparametersonoutputqualitycharacteristicsorresponses510.Butthistechniquerequiresalargenumberofexperimentalrunsbecauseonlyonefactorisvariedineachrun,keepingallotherfactorsconstant.Also,inthistechnique,theinteractioneffectsamongvariousinputprocessparametersarenotconsidered.Toovercometheseproblems,some1.IntroductionThelaserwasinventedin1960sandhaswideapplica-tionsinthefieldoffinecuttingofsheetmetalsduetoitsprecisionandhighintensity1,2.Laserbeamcutting(LBC)canbesuccessfullyusedforthecuttingofconductiveandnonconductivedifficult-to-cutadvancedengineeringmaterialssuchasreflectivemetals,plastics,rubbers,ceramicsandcomposites.Apartfromcuttingdifficult-to-cutmaterials,LBCismostwidelyusedinLBCprocesshasbeenshowninFig.1.Sinceitsintroduction,LBChasalwaysbeenamajorresearchareaforgettingtheexceptionallygoodqualityofcut.Thequalityofcutsolelydependsonthesettingofprocessparameterssuchaslaserpower,typeandpressureofassistgas,sheetmaterialthicknessanditscomposition,cuttingspeed,andmodeofoperation(continuouswaveorpulsedmode).Alotofexperimentalinvestigationhasbeenundertakenwiththeaimofanalysingtheeffectofprocessparametersoncutgeometry,andcutsurfacequality.Multi-objectiveoptimisationAvanishKumarDubeyDepartmentofMechanicalEngineering,MotilalNehruNationalReceived31July2007;receivedinrevisedformAbstractThispaperpresentsahybridTaguchimethodandresponsesurfacebeamcuttingprocess.TheapproachfirstusestheTaguchiqualitysuchasassistgaspressure,pulsewidth,pulsefrequencyandcuttingcentralvaluesintheresponsesurfacemethodtodevelopandoptimiseKerfwidth(KW),andmaterialremovalrate(MRR),thatareofdifferentthehigherthebettertype),havebeenselectedforsimultaneousoptimisation.qualitycharacteristicswhenthehybridapproachisused,ascomparedr2007ElsevierLtd.Allrightsreserved.(2008)562570laserbeamcuttingprocessC3,VinodYadavaofTechnology,Teliarganj,Allahabad,UP211004,IndiaSeptember2007;accepted7September2007method(TMRSM)forthemulti-responseoptimisationofalaserfunctiontofindtheoptimumlevelofinputcuttingparametersTheoptimuminputparametervaluesarefurtherusedasthethesecond-orderresponsemodel.Thetwoqualitycharacteristicsnature(KWisofthesmaller-the-bettertype,whileMRRisofT/locate/optlastecARTICLEINPRESSNomenclaturebregressioncoefficientDcompositedesirabilitydindividualdesirabilityknumberofresponsesorqualitycharacteristicsLijthequalitylossfortheithqualitycharacteristicatthejthtrialconditionorrunLi*maximumqualitylossfortheithqualitycharacteristicamongalltheexperimentalrunsmMeanofmultipleS/NratiosofallexperimentalrunsnnumberofexperimentalrunspnumberofcontrolfactorsorinputprocessparametersA.KumarDubey,V.Yadava/Optics&Lasersignal-to-noise(S/N)ratioofoverallfigure-of-meritwasconsideredasqualityfunction.Thisqualityfunctionintegratestheweightedeffectsofqualitycharacteristics(Kerfwidth(KW),surfaceroughness,micro-hardness,slopeofcutedgeandHAZ)andcostcomponents(cuttingspeed,oxygenpressureandbeampower).Limetal.12haveappliedthesameapproachforthestudyofthesurfaceroughnessobtainedduringhigh-speedlasercuttingofstainlesssteelsheets.Lietal.13havealsoappliedTaguchisrobustdesignmethodologytostudythewidthofcutandHAZduringlasercuttingof(quadflatno(QFN)lead)packagesusingadiodepumpedsolidstatelaser(DPSSL)system.Thecuttingparameterstakenare:lasercurrent,laserfrequencyandcuttingspeed.Mathewetal.14performedparametricstudiesonpulsedNd:YAGlasercuttingoffibrereinforcedplasticcompositesheet(2mmthick).Acentralcompositedesign(CCD)withuniformprecisionwasusedforexperimentaldesignandasecond-orderresponsesurfacemodelforHAZGASJETDRAGLINESMELTINGORSLAGNOZZLEGASFOCUSINGOPTICSLASERBEAMCUTTINGEDGEONWORKPIECEFig.1.Schematicoflaserbeamcutting.andKerftaperwasdeveloped.Theinputprocessparameterswerecuttingspeed,pulseenergy,pulsedura-tion,pulserepetitionrateandgaspressure.Almeidaetal.15appliedfactorialdesignapproachtodeterminetheeffectsofpulseenergy,overlappingrateandtypeofassist-gasonthesurfaceroughnessanddrossformation(edgeirregularity)duringNd:YAGlasercuttingofpuretitaniumandtitaniumalloy(Ti6Al4V).ThedesignofexperimentsbasedstudiesonLBCprocesssofarhavebeenmainlyaimedattheoptimisationofthesinglequalitycharacteristicatatime.Ithasbeenfoundthattheoptimumparametersettingsforonequalitycharacteristicmaydeteriorateotherqualitycharacteristics.Astheaimofamanufacturingprocessisalwaystoimprovetheoverallqualityofaproductitisnecessarytooptimisethemultiplequalitycharacteristicssimulta-neously.Antony16hasdemonstratedaTaguchiqualitylossfunctionbasedmulti-objectiveoptimisationtechniqueformanufacturingprocessestakinganexampleofelectro-wiweightingfactorassignedtoithresponseorqualitycharacteristicxiithinputprocessparameterorcontrolfactorYjtotalnormalisedqualitylossvalueinjthexperimentalrunyiresponseorobservedqualityvalueinithexperimentalrunyijnormalisedqualitylossvalueforithexperi-mentalrunandjthqualitycharacteristicZS/NratioZopredictedmultipleS/NratioatoptimumparameterlevelsZejmultipleS/NratioofjthtrialconditionorexperimentalrunTechnology40(2008)562570563nicassemblyproblem.Hehasfoundconsiderableim-provementinmultiplequalitycharacteristics,incomparisontosinglequalitycharacteristics.Differenthybridapproacheshaverecentlybeenusedfortheoptimisationofdifferentmachiningprocesses.Taguchimethodwithfuzzylogic17orwithgreyrelationalanalysis18hasbeenusedtooptimisetheelectricaldischargemachiningprocess(anon-conventionalthermalbasedmachiningprocess)withmultiplemachiningperformance.Chiadamrong19hassuggestedasequentialintegrationapproachofTMandRSMtooptimisethequalitycharacteristicsinmanufacturingsystem.Hedemonstratedthehybridmethodologybytakingacasestudyofprintedcircuitboardmanufacturingplantandfoundasignificantreductioninqualityloss.ThehybridapproachofTMandRSMhasyetnotbeenappliedinthestudyofLBCprocesswithsingleormultipleperformancemeasures.InthepresentpaperahybridTaguchimethodandresponsesurfacemethod(TMRSM)approachhasbeenusedtodeveloptheresponsemodelsandtooptimisetheselectionofOAisbasedonthetotaldegreeoffreedom(dof)ofARTICLEINPRESS&Lasertheprocess.Mathematically,thedofcanbecomputedas22:dofnumberoflevelsC01foreachcontrolfactornumberoflevelsforAC01C2numberoflevelsforBC01foreachinteraction1C138,1where,AandBaretheinteractingcontrolfactors.IntheTaguchimethod,theS/Nratio(Z)isusedtorepresentthequalitycharacteristicsfortheobserveddataorresponses.Here,thesignalrepresentsthedesirablevalueandthenoiserepresentstheundesirablevalueandS/Nratioexpressesthescatteraroundthedesiredvalue.ThelargertheS/Nratio,smallerwillbethescatter.Dependingontheexperimentalobjectives,thereareseveralqualitycharacteristics.Inthepresentcase,asmallervalueofKWandahighervalueofMRRaredesirable.IntheTaguchimethodthesecharacteristicsaretermedSBtypeandHBtyperespectively.Mathematically,theS/Nratios(Z)forSBandHBtypequalitycharacteristicscanbecomputedas2122:LBCprocessformultiplequalitycharacteristicssuchasKW,andmaterialremovalrate(MRR).ApulsedNd:YAGlaserbeamisusedforcuttingofthinsheetsofmagneticmaterial(grainorientedhighsilicon-alloysteelsheetsusedintransformers).Thequalitycharacteristicsoftwodifferentnature(KWisofsmaller-the-better(SB)typeandMRRisofhigher-the-better(HB)type)withunequalweightingfactor(KW:80%,andMRR:20%)havebeenselected.Firstly,TMisappliedtodeterminetheoptimumprocessparametersformultiplequalitycharacteristics(i.e.forminimumKWandmaximumMRR).Theoutput(optimumparametervalues)fromTMisfurtherusedascentralvalueinRSM.Thesecond-orderresponsemodelforKWandMRRhasbeendevelopedbyperformingtheexperimentsusingthecentralcompositerotatabledesign(CCRD)matrix20.TheMINITABsoftwarehasbeenusedtocalculatethefinalresultsofmulti-objectiveoptimisation.Theresultsofmulti-objectiveoptimisationusingTaguchisqualitylossfunctiononlyhavealsobeencomparedwiththeresultsfromhybridapproach.2.Experimentalplanningmethods2.1.TaguchimethodIntheTaguchimethod,theoptimumlevelofinputprocessparametersorcontrolfactorsaredecidedonthebasisofstatisticalanalysisofexperimentalresultsthatmakestheprocessinsensitivetotheeffectofvariationsduetouncontrollableornoisefactorssuchasenvironmentaltemperature,humidityandvibration.Inthismethod,theexperimentsareperformedasperspeciallydesignedexperi-mentalmatrixknownasorthogonalarray(OA)2122.TheA.KumarDubey,V.Yadava/Optics564ZC010log10MSD,(2)where,MSD=meansquaredeviationfromthedesiredvalueandcommonlyknownasqualitylossfunction.ForSBC0type;MSD1=nXni1y2i#,(3)ForHBC0type;MSD1=nXni11=y2i#,(4)where,yiistheobservedresponseorqualityvalueattheithtrialorexperimentalrunandnisthenumberoftrialsatsameparameterlevel.Inmulti-objectiveoptimisation,asingleoverallS/NratioforallqualitycharacteristicsiscomputedinplaceofseparateS/Nratiosforeachofthequalitycharacteristic.ThisoverallS/NratioisknownwiththenameofmultipleS/Nratio(MSNR).TheMSNRforjthtrialZejiscomputedasgivenbelow16.ZejC010log10Yj,(5)YjXki1wiyij,(6)yijLijLiC3,(7)whereYjisthetotalnormalisedqualitylossinjthtrial,wirepresentstheweightingfactorfortheithqualitycharacteristic,kisthetotalnumberofqualitycharacter-isticsandyijisthenormalisedqualitylossassociatedwiththeithqualitycharacteristicatthejthtrialcondition,anditvariesfromaminimumofzerotoamaximumof1.LijisthequalitylossorMSDfortheithqualitycharacteristicatthejthtrial,andLi*isthemaximumqualitylossfortheithqualitycharacteristicamongalltheexperimentalruns.2.2.ResponsesurfacemethodRSMisacollectionofstatisticalandmathematicalmethodsthatareusefulforthemodellingandoptimisationoftheengineeringscienceproblems.Inthistechnique,themainobjectiveistooptimisetheresponsesthatareinfluencedbyvariousinputprocessparameters.RSMalsoquantifiestherelationshipbetweenthecontrollableinputparametersandtheobtainedresponses.InmodellingandoptimisationofmanufacturingprocessesusingRSM,thesufficientdataiscollectedthroughdesignedexperimentation.Ingeneral,asecond-orderregressionmodelisdevelopedbecausefirst-ordermodelsoftengivelack-of-fit23.AccordingtoRSM,alltheinputprocessparametersareassumedtobemeasurable,thecorrespondingresponsescanbeexpressedasfollows:yfx1;x2;:;xp,(8)where,x1,x2,y,xpareinputprocessparametersandyisTechnology40(2008)562570theresponsewhichisrequiredtobeoptimised.Here,itisassumedthattheindependentvariables(inputprocessNozzlediameter(1.0mm),nozzletipdistance(1.0mm),andsheetmaterialthickness(0.5mm)werekeptconstantthroughouttheexperimentation.Thetwoqualitychar-acteristicsanalysedareKWandMRR.Thegrainorientedhighsilicon-alloysteelsheet(amagneticmaterialsheetusedintransformercores)wasusedintheexperimentsassheetmaterial.Twocutseachof15mmlengthwereARTICLEINPRESS&LaserTechnology40(2008)562570565parameters)arecontinuousandcontrollablebyexperi-mentswithnegligibleerrors.Itisalsorequiredtofindasuitableapproximationforthetruefunctionalrelationshipbetweenindependentvariablesandresponses.Usually,asecond-orderregressionmodelasgivenbelowisutilisedinRSM.yb0Xpi1bixiXpi1biix2iXiXjbijxixj,(9)where,allbsareregressioncoefficientsdeterminedbyleastsquaremethod23.Inordertoestimatetheregressioncoefficientsinthismodeleachvariableximustbetakenatleastthreedifferentlevels.Thisrequires3pnumberofexperimentsinfactorialdesignbutitisatediousjobwithlargenumberoffactors.Forfittingsecond-ordermodelanewdesignknownasCCDisgenerallyused20.Itrequiresexperimentationwith2pnumberofexperimentsoffactorialdesignand2p+1combinationofadditionalfactors.Thesecombinationsaretakenasgivenbelow:0;0.;0;C0a;0;.;0;a;0.;0;0;C0a;.;0;0;a.;0.0;0;.;C0a;0;0.;a:Here,thevalueofcodeaisequalto(2p)1/4,anditisintroducedtoprovidetheorthogonalpropertytoarray.Thecodedlevel0representsthecentralvalueofinputprocessparameters.Itisimportantforasecond-ordermodeltoprovideoptimumpredictionabouttheprocessbehaviourwithinthespecifiedrangeofallinputprocessparameters.Sothemodelshouldhaveareasonablyconsistentandstablepredictionofresponsesatpointsofinterestxi.ThiscanbeachievedbyCCRD.AccordingtoCCRDmethodology,standarderroriskeptsameforallpointsthatareatthesamedistancefromthecentreoftheregion.Thiscanbestatedmathematicallyasfollows20:x21x22C1C1C1x2pconstant:(10)CCRDrequiresminimumfivelevelsofallfactorsforthecalculationofregressioncoefficients.Inthissituation,thetotalnumberofcombinationsorrunsrequiredbecomes2p+2p+morethanonerunsatcentre.InpresentcaseoffourcontrolfactorsanstandardCCRDmatrixwith7centralpointrunshasbeenselected20.Thedevelopedresponsemodelisusedforfindingoptimumlevelofinputprocessparameters.Thisisobtainedbylocationofstationarypointsthatwillleadtoapointofmaximumorminimumresponse23.3.ExperimentalprocedureandoperatingparametersTheexperimentalstudieswereperformedona200WpulsedNd:YAGlaserbeammachiningsystemwithCNCworktable.Theoxygenisusedasanassistgas.Thevariableinputprocessparameters(orcontrolfactors)A.KumarDubey,V.Yadava/Opticstakenareassistgaspressure,pulsewidth,pulsefrequency,andcuttingspeed.Focallengthoflensusedis50.0mm.obtainedineachexperimentalrun.TheKWwasmeasuredusingtheToolMakersMicroscope(ModelRTM-900,RADICALInstruments,India)at10C2magnification.TheKW(mm)takenisthemathematicalaverageoftwocutscorrespondingtosameexperimentalrun.KWofeachcuthasbeenmeas
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清华大学《医学机能学实验(Ⅱ)》2023-2024学年第二学期期末试卷
- 湖北工程学院《网络空间安全学科前沿(创新创业教育)》2023-2024学年第二学期期末试卷
- 南通科技职业学院《计算机图形图像技术》2023-2024学年第二学期期末试卷
- 郑州食品工程职业学院《新闻采访写作实务》2023-2024学年第二学期期末试卷
- 福建师范大学协和学院《人力资源管理数据分析与运用》2023-2024学年第二学期期末试卷
- 广西水利电力职业技术学院《无机及分析化学(上)》2023-2024学年第二学期期末试卷
- 2025届高三化学三轮冲刺 用反应势能图理解多重平衡体系 课件
- 安徽师范大学皖江学院《微波电路》2023-2024学年第二学期期末试卷
- 南京中医药大学翰林学院《计算机绘图基础》2023-2024学年第二学期期末试卷
- 郑州电子信息职业技术学院《小学英语课程标准与教学设计》2023-2024学年第二学期期末试卷
- 2022年巫山县教师进城考试笔试题库及答案解析
- 青少年模拟法庭剧本(敲诈勒索)
- 万用表校准报告
- 新闻采访与写作(马工程笔记)
- DB32∕T 1703-2011 科技成果转化服务规范总则
- SQ-02-绿色食品种植产品调查表0308
- 视频结构化大数据平台解决方案
- SolidWorks、CAD三维建模练习习题图
- 光伏发电项目安全专项投资估算方案
- 大学生物技术分析教材与教学设计
- 皮尔逊Ⅲ型曲线模比系数计算(共享版).xls
评论
0/150
提交评论