![[中考]山西省历年中考数学题型分析_第1页](http://file.renrendoc.com/FileRoot1/2017-12/13/9fab4b24-f582-419d-ac94-1298e010f0a0/9fab4b24-f582-419d-ac94-1298e010f0a01.gif)
![[中考]山西省历年中考数学题型分析_第2页](http://file.renrendoc.com/FileRoot1/2017-12/13/9fab4b24-f582-419d-ac94-1298e010f0a0/9fab4b24-f582-419d-ac94-1298e010f0a02.gif)
![[中考]山西省历年中考数学题型分析_第3页](http://file.renrendoc.com/FileRoot1/2017-12/13/9fab4b24-f582-419d-ac94-1298e010f0a0/9fab4b24-f582-419d-ac94-1298e010f0a03.gif)
![[中考]山西省历年中考数学题型分析_第4页](http://file.renrendoc.com/FileRoot1/2017-12/13/9fab4b24-f582-419d-ac94-1298e010f0a0/9fab4b24-f582-419d-ac94-1298e010f0a04.gif)
![[中考]山西省历年中考数学题型分析_第5页](http://file.renrendoc.com/FileRoot1/2017-12/13/9fab4b24-f582-419d-ac94-1298e010f0a0/9fab4b24-f582-419d-ac94-1298e010f0a05.gif)
已阅读5页,还剩142页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省历年中考数学题型分析一、试卷整体性试卷的整体性是指整份试卷的考察内容分布比例、试题量的设定、题型的选择和搭配、难易程度的测算等等。以保证同一水平学生考试成绩相当,与预期的目标达成一致。试题难度的分布应以递进形式表现如第一题应是整份试卷中最容易的题一般试题的题型有三种类型,选择题填空题解答题每类题的题量各地不同,但都应从易到难排列二、试卷的原则性1、严格执行数学课程标准,不超越标准,不降低标准,不受教材限制。标准是中考命题的唯一依据。2、坚持重点考查基本运算能力、思维能力和空间观念的同时,着重考查运用数学知识分析和解决简单实际问题的能力。知识立意与能力立意并重,体现基础性,强调考查数学的核心内容,不追求知识点的覆盖率。3、命制一定数量的与现实情境结合的应用型、开放型、探究型试题,以考查创新能力和实践能力,为推动课程改革、改变教学的方式起到导向作用。4不出人为编造的繁难计算题和证明题不出偏题、怪题不出考查非数学本质的试题不出陈题、成题和教材中、资料中的原题不出以相关学科知识与技能为前提或载体的试题不出按超标教学形成的技能解决的的试题选择题具有知识覆盖面广,容量大的特点,选择题在中考试卷中共有12道题,它主要考查学生分析、判断和解决问题的能力,有利于培养学生思维的敏捷性和灵活性。中考选择题的解法一、直接求解对照法直接根据选择题的题设,通过计算、推理、判断得出正确选项1若半径为3,5的两个圆相切,则它们的圆心距为()A2B8C2或8D1或4解C点拨本题可采用“直接求解对照法”两圆相切分为内切和外切,当两圆内切时,它们的圆心距为532,当两圆外切时,它们的圆心距为358二、定义法运用相关的定义、概念、定理、公理等内容,作出正确选择的一种方法1已知一次函数YKXK,若Y随X的增大而减小,则该函数的图象经过()A第一、二、三象限;B第一、二、四象限C第二、三、四象限;D第一、三、四象限2。如图347所示,四个平面图形,其中既是轴对称图形又是中心对称图形的是()3、如图1,是三个反比例函数在轴上方的图象,由此观察得到,K1K2K3,的大小关系为()A、K1K2K3B、K3K2K1C、K2K3K1D、K3K1K2图1XKY34(2012山西)为了实现街巷硬化工程高质量“全覆盖”,我省今年14月公路建设累计投资927亿元,该数据用科学记数法可表示为(D)A09271010B927109C9271011D927109考点科学记数法表示较大的数。5(山西2010)3山西是我国古代文明发祥地之一,其总面积约为16万平方千米,这个数据用科学记数法表示为(D)A016106平方千米B16104平方千米C16104平方千米D16105平方千米6(2011陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为(A)A、137109B、137107C、137108D、1371010点评此题主要考查科学记数法的表示方法,以及用科学记数法表示的有效数字的确定方法三、特殊值法根据命题条件选择题中所研究的量可以在某个范围内任意取值,这时可以取满足条件的一个或若干特殊值代人进行检验,从而得出正确答案L若0X1,则X,X2,X3的大小关系(A)XX2X3BXX3X2CX3X2XDX2X3X四、数形结合法有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的直观性从中找出正确答案已知抛物线YAX2BXC(A0)的对称轴为X1,与X轴的一个交点为(X1,0),且0X11,下列结论9A3BC0;BA;3AC0。其中正确结论的个数是()(A)0个(B)1个(C)2个(D)3个图3五、排除法有些选择题可以根据题设条件和有关知识,从4个答案中,排除3个答案,根据答案的唯一性,从而确定正确的答案,这种方法也称为排除法1(山西省课改)、函数YKXB(K0)与Y(K0)在同一坐标系中的图象可能是()2在同一坐标系中一次函数和二次函数的图象可能为()六、验证法直接将各选择支中的结论代人题设条件进行检验,从而选出符合题意的答案9分式方程的解为()ABCD七、综合法为了对选择题迅速、正确地作出判断,有时需要综合运用前面介绍的几种方法如图所示,AOB的两边OA、OB均为平面反光镜,AOB35,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则DEB的度数是()A35B70C110D120(山西2011)6将一个矩形纸片依次按图1、图2的方式对折,然后沿图3中的虚线裁剪,最后将图4的纸再展开铺平,所得到的图案是()(2011河北)如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱设矩形的长和宽分别为Y和X,则Y与X的函数图象大致是()ABCD解选择题的原则是既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的于抗,须注意以下几点(1)要认真审题;(2)要大胆猜想;(3)要小心验证;(4)先易后难,先简后繁中考填空题解法一、直接法例如图,点C在线段AB的延长线上则的度数是_。分析由题设知,利用三角形的一个外角等于和它不相邻的两个内角的和知识,通过计算可得出ABCD例已知中,的平分线交于点,则的度数为分析此题已知条件中就是中,说明只要满足此条件的三角形都一定能够成立。故不妨令为等边三角形,马上得出。二、特例法三、观察法例一组按规律排列的式子,(),其中第7个式子是,第个式子是(为正整数)分析通过观察已有的四个式子,发现这些式子前面的符号一负一正连续出现,也就是序号为奇数时负,序号为偶数时正。同时式子中的分母A的指数都是连续的正整数,分子中的B的指数为同个式子中A的指数的3倍小1,通过观察得出第7个式子是,第个式子是。四、猜想法第1个图第2个图第3个图例用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第N个图形需棋子枚(用含N的代数式表示)分析从第1个图中有4枚棋子4311,从第2个图中有7枚棋子7321,从第3个图中有10枚棋子10331,从而猜想第N个图中有棋子3N1枚16(2012山西)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第N个图案中阴影小三角形的个数是例如果XY4,XY8,那么代数式X2Y2的值是分析若直接由XY4,XY8解得X,Y的值,再代入求值,则过程稍显复杂,且易出错,而采用整体代换法,则过程简洁,妙不可言分析X2Y2(XY)(XY)4832五、整体法例已知,则的值等于_分析运用完全平方公式,得22例已知反比例函数的图象经过点(M,2)和(2,3)则M的值为分析采用构造法求解由题意,构造反比例函数的解析式为,因为它过(2,3)所以把2,3代入得K6解析式为而另一点(M,2)也在反比例函数的图像上,所以把XM,Y2代入得M3六、构造法七、图解法例如图为二次函数YAX2BXC的图象,在下列说法中AC0;方程AX2BXC0的根是X11,X23ABC0当X1时,Y随X的增大而增大。正确的说法有_。分析本题借助图解法来求利用图像中抛物线开口向上可知A0,与Y轴负半轴相交可知C0,所以AC0图像中抛物线与X轴交点的横坐标为1,3可知方程AX2BXC0的根是X11,X23从图中可知抛物线上横坐标为1的点(1,ABC)在第四象限内所以ABC0从与X轴两交点的横坐标为1,3可知抛物线的对称轴为X1且开口向上,所以当X1时Y随X的增大而增大。所以正确的说法是中考解答题一计算计算考点实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。2011北京)点评本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负指数幂、零指数幂、立方、绝对值等考点的运算(2012山西)19(1)计算考点实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。(二)化简求值1有关分式(山西2011)19(1)先化简。再求值,其中先化简,再求值其中,A是方程X23X10的根(A23A)结果为先化简,再对A取一个你喜欢的数代入求值真的可以取自己喜欢的任意一个数值代入求值吗有同学说只要X2,X可以任意选取一个数值,代入计算即可其实,要使原式有意义才行,即X不可取2、0、2许多同学就因为取了X0或2而出错(2012山西)14化简的结果是考点分式的混合运算。2有关整式19(1)计算15、(2011北京)已知A22ABB20,求代数式A(A4B)(A2B)(A2B)的值考点整式的混合运算化简求值。19、(2011河北)已知是关于X,Y的二元一次方程的解,求(A1)(A1)7的值考点二次根式的混合运算;二元一次方程的解。点评此题主要考查了二次根式的混合运算以及二元一次方程的解,根据题意得出A的值是解决问题的关键(2012山西)19(2)先化简,再求值(2X3)(2X3)4X(X1)(X2)2,其中X考点整式的混合运算化简求值;(三)解方程1有关整式方程(山西2009)19(3)解方程(注此题还可用公式法,分解因式法求解)2有关分式方程(2011)18、解方程(2011陕西)17、解分式方程点评解分式方程的思想是转化即将分式方程转化为整式方程求解;同时要注意解出的X要代入最简公分母中进行检验20(2012山西)解方程考点解分式方程。(四)解不等式(组)(山西2011)19(2)解不等式组,并把它的解集表示在数轴上。(天津2011)19解不等式组(2012山西)13,不等式组的解集是(五)函数1、已知二次函数YX22X3的图象与X轴交于A、B两点(A在B的左侧),与Y轴交于点C,顶点为D(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;(2)说出抛物线YX22X3可由抛物线YX2如何平移得到(3)求四边形OCDB的面积2如图,在平面直角坐标系中,一次函数的图象分别交X轴、Y轴于A、B两点,与反比例函数的图象交于C、D两点,DEX轴于点E已知C点的坐标是6,1,DE3(1)求反比例函数与一次函数的解析式。(2)根据图象直接回答当X为何值时,一次函数的值大于反比例函数的值3(天津2011)20已知一次函数B为常数的图象与反比例函数(K为常数,且)的图象相交于点P31I求这两个函数的解析式;II当X3时,试判断Y1与Y2的大小井说明理由。4(河南2011)20如图,一次函数与反比例函数的图象交于点A4,M和B8,2与Y轴交于点C(1)K1,K2;(2)根据函数图象可知,当Y1Y2时,X的取值范围是;(3)过点A作ADX轴于点D,点P是反比例函数在第一象限的图象上一点设直线OP与线段AD交于点E,当SODE31时,求点P的坐标中考作图型试题(一)尺规作图1(山西2011)22本题9分如图,ABC是直角三角形,ACB90(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母保留作图痕迹,不写作法作ABC的外接圆,圆心为O;以线段AC为一边,在AC的右侧作等边ACD;连接BD,交O于点E,连接AE,2综合与运用在你所作的图中,若AB4,BC2,AD与O的位置关系是_线段AE的长为_(二)网格问题1、(无锡)已知图1和图2中的每个小正方形的边长都是1个单位(1)将图1中的格点ABC,先向右平移3个单位,再向上平移2个单位,得到A1B1C1,请你在图1中画出A1B1C1(2)在图2中画出一个与格点DEF相似但相似比不等于1的格点三角形分析本题关键是计算出ABC的三边的长度,然后找一个不等于1的相似比,比如相似比为2,计算出DEF三边长或计算出一边长后,利用平移得出DEF。ABC图1图2FDE1将图中的ABC作如下运动。沿X轴向左平移2个单位,得到ABC,不画图直接写出发生变化后的三个顶点的坐标。以A点为位似中心放大到原来2倍,得到ABC画出图形并写出发生变化后的三个顶点的坐标(三)设计图案1(山西2009)20(本题6分)已知每个网格中小正方形的边长都是1,图1(第20题图1)中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成(1)填空图1中阴影部分的面积是(结果保留);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换)(第20题图1)21(2012山西)实践与操作如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形考点利用旋转设计图案;利用轴对称设计图案。(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形中考统计与概率解答题(一)中考概率试题特点分析一、考查对概率意义的理解以及频率和概率关系的认识二、考查利用列举法计算事件发生的概率三、考查运用概率的知识和方法分析、说理,解决一些简单的实际问题1放回的概率1(山西2011)21小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌兖分洗匀后,背面朝上放在桌面上规定游戏规则如下先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字如果组成的两位数恰好是2的倍数则小明胜;如果组成的两位数恰好是3的倍数则小亮胜你认为这个游戏规则对双方公平吗请用画数状图或列表的方法说明理由2如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字有人为甲、乙两人设计了一个游戏,其规则如下(1)同时自由转动转盘A、B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜你认为这样的规则是否公平请说明理由;如果不公平,请你设计一个公平的规则,并说明理由3(2012山西)6在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()ABCD2不放回的概率1(山西2009)22某商场为了吸引顾客,设计了一种促销活动在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样规定顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回)商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费某顾客刚好消费200元(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率2(无锡)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少3几何概率。8(2012山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边ADBD上的点,EFAB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()ABCD(二)中考统计试题特点分析一、在现实问题中考查收集、整理和描述数据的知识和方法二、在具体问题中能选择合适的统计量表示数据的集中程度、离散程度三、考查样本估计总体的统计思想,考查运用统计知识作出合理决策2(山西2010)21(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)(1)该店第一季度售出这种品牌的电动自行车共多少辆(2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C型电动自行车应订购多少辆ABCD60(第21题图1)60150210120180240辆数型号B35AC30D(第21题图2)22(2012山西)今年太原市提出城市核心价值观“包容、尚德、守法、诚信、卓越”某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图请你结合图中信息解答下列问题(1)填空该校共调查了名学生(2)请你分别把条形统计图和扇形统计图补充完整考点条形统计图;扇形统计图。解答解(1)有条形统计图可知对包容一项感兴趣的人数为150人,有扇形统计图可知此项所占的比例为30,总人数15015500;(2)补全条形统计图(如图1),补全扇形统计图(如图2)中考几何证明题(一)有关三角形的证明1(山西2009)25(本题12分)在ABC中,ABBC2,ABC1200将ABC绕点B顺时针旋转角得交AC于点E,A1C1分别交AC,BC于D。F两点(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系并证明你的结论;(2)如图2,当300时,试判断四边形的形状,并说明理由;(3)在(2)的情况下,求ED的长ADBECFADBECF(第25题图1)(第25题图2)2(2011)24、如图,等边ABC中,AO是BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边CDE,连接BE(1)求证ACDBCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CPCQ5,若BC8时,求PQ的长解答解(1)ABC与DCE是等边三角形,ACBC,DCEC,ACBDCE60,ACDDCBECBDCB60,ACDBCE,ACDBCE(SAS);(2)过点C作CHBQ于H,ABC是等边三角形,AO是角平分线,DAC30,ACDBCE,QBCDAC30,CH12BC1284,PCCQ5,CH4,PHQH3,PQ6方法1有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。方法2含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。三角形问题添加辅助线方法方法3结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。方法4结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。(二)有关四边形的证明(2011北京)24、在ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CECF;(2)若ABC90,G是EF的中点(如图2),直接写出BDG的度数;(3)若ABC120,FGCE,FGCE,分别连接DB、DG(如图3),求BDG的度数考点平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质。专题计算题;证明题。分析(1)根据AF平分BAD,可得BAFDAF,利用四边形ABCD是平行四边形,求证CEFF即可(2)根据ABC90,G是EF的中点可直接求得(3)分别连接GB、GE、GC,求证四边形CEGF是平行四边形,再求证ECG是等边三角形由ADBC及AF平分BAD可得BAEAEB,求证BEGDCG,然后即可求得答案4、(2011海南)23如图,在菱形ABCD中,A60,点P、Q分别在边AB、BC上,且APBQ(1)求证BDQADP;(2)已知AD3,AP2,求COSBPQ的值(结果保留根号)考点菱形的性质;全等三角形的判定与性质;解直角三角形。分析(1)由四边形ABCD是菱形,可证得ADAB,ABDCBDABC,ADBC,又由A60,易得ABD是等边三角形,然后由SAS即可证得BDQADP;(2)首先过点Q作QEAB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可求得COSBPQ的值平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下(1)连对角线或平移对角线(2)过顶点作对边的垂线构造直角三角形平行四边形中常用辅助线的添法(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。(5)过顶点作对角线的垂线,构成线段平行或三角形全等(2011重庆)24、如图,梯形ABCD中,ADBC,DCB45,CD2,BDCD过点C作CEAB于E,交对角线BD于F,点G为BC中点,连接EG、AF(1)求EG的长;(2)求证CFABAF(三)有关梯形的证明考点梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理。专题证明题;几何综合题。分析(1)根据BDCD,DCB45,得到DBCDCB,求出BDCD2,根据勾股定理求出BC2,根据CEBE,点G为BC的中点即可求出EG;(2)在线段CF上截取CHBA,连接DH,根据BDCD,BECD,推出EBFDCF,证出ABDHCD,得到ADHD,ADBHDC,根据ADBC,得到ADBDBC45,推出ADBHDB,证出ADFHDF,即可得到答案梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有(1)在梯形内部平移一腰。(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高梯形中常用辅助线的添法(6)平移对角线(7)连接梯形一顶点及一腰的中点。(8)过一腰的中点作另一腰的平行线。(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。(四)有关圆的几何证明切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形。1201120、如图,在ABC,ABAC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBFCAB(1)求证直线BF是O的切线;(2)若AB5,SINCBF求BC和BF的长提示(2)过点C作CGAB于点G9(2012山西)如图,AB是O的直径,CD是O上一点,CDB20,过点C作O的切线交AB的延长线于点E,则E等于()A40B50C60D70考点切线的性质;圆周角定理。解答解连接OC,如图所示圆心角BOC与圆周角CBD都对,BOC2CBD,又CDB20,BOC40,又CE为圆O的切线,OCCE,即OCE90,则E904050故选B在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。圆中常用辅助线的添法(2)见直径作圆周角,在题目中若已知圆的直径,一般是作直径所对的圆周角,利用“直径所对的圆周角是直角“这一特征来证明问题。(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用“切线与半径垂直“这一性质来证明问题。实际应用题(一)解直角三角形的应用题1(山西2009)23(本题8分)有一水库大坝的横截面是梯形ABCD,ADBC,EF为水库的水面,点E在DC上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡上DE的长为2米,求水深(精确到01)(第23题)ABCDEFMGH水深2(太原2009)24如图,从热气球上测得两建筑物、底部的俯角分别为30和600如果这时气球的高度为90米且点A、D、B在同一直线上,求建筑物A、B间的距离ABCDEFEE3(2011包头)22、一条船上午8点在A处望见西南方向有一座灯塔B,此时测得船和灯塔相距36海里,船以每小时20海里的速度向南偏西24的方向航行到C处,此时望见灯塔在船的正北方向(参考数据SIN2404,COS2409)(1)求几点钟船到达C处;(2)当船到达C处时,求船和灯塔的距离4。(2011年青海)24某学校九年级的学生去旅游,在风景区看到一棵古松,不知这棵古松有多高,下面是他们的一段对话甲我站在此处看树顶仰角为45。乙我站在此处看树顶仰角为30。甲我们的身高都是15M。乙我们相距20M。请你根据两位同学的对话,参考图7计算这棵古松的高度(参考数据1414,1732,结果保留两位小数)。5(2012山西)23如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端AB的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45,求岛屿两端AB的距离(结果精确到01米,参考数据)考点解直角三角形的应用仰角俯角问题。解答解过点A作AECD于点E,过点B作BFCD于点F,ABCD,AEFEFBABF90,四边形ABFE为矩形ABEF,AEBF由题意可知AEBF100米,CD500米在RTAEC中,C60,AE100米CE(米)在RTBFD中,BDF45,BF100DF100(米)ABEFCDDFCE50010060017360057675423(米)答岛屿两端AB的距离为5423米(二)方程(组)的应用(2011济南)24、某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定成人票价每位40元,学生票价每位20元该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人考点二元一次方程组的应用。17(2012山西)图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是CM3考点一元一次方程的应用。24(2012山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答(1)每千克核桃应降价多少元(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售考点一元二次方程的应用。22、(2011东营)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达216万辆(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,从2011年初起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过23196万辆;另据估计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数多不能超过多少万辆考点一元二次方程的应用;一元一次不等式的应用。解(1)设该市汽车拥有量的年平均增长率为X,根据题意得,15(1X)2216解得X10220,X222(不合题意,舍去)答该市汽车拥有量的年平均增长率为20;(2)设全市每年新增汽车数量为Y万两,则2011年底全市的汽车拥有量为21690Y万两,2012年底全市的汽车拥有量为(21690Y)90Y万两根据题意得(21690Y)90Y23196,解得Y3,答该市每年新增汽车数量最多不能超过3万两点评本题考查了一元二次方程和不等式的应用,判断所求的解是否符合题意,舍去不合题意的解找到关键描述语,找到等量关系准确的列出方程是解决问题的关键(三)不等式(组)和方程(组)应用题(方案设计)1(山西2010)24(本题8分)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服(1)该店订购这两款运动服,共有哪几种方案(2)若该店以甲款每套400无,乙款每套300元的价格全部出售,哪种方案获利最大2、(常州)九()班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36千克乙种制作材料27千克制作、两种型号的陶艺品用料情况如下表(1)设制作B型陶艺品X件,求X的取值范围;(2)请你根据学校现有材料,分别写出九(2)班制作A型和B型陶艺品的件数需甲种材料需乙种材料1件A型陶艺品9千克03千克1件B型陶艺品04千克1千克解(1)由题意得由得,X18,由得,X20,所以X的取值得范围是18X20(X为正整数)(2)制作A型和B型陶艺品的件数为制作A型陶艺品32件,制作B型陶艺品18件;制作A型陶艺品31件,制作B型陶艺品19件;制作A型陶艺品30件,制作B型陶艺品20件;1某商品现在的售价为每件35元每天可卖出50件市场调查反映如果调整价格每降价1元,每天可多卖出2件请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少设每件商品降价X元每天的销售额为Y元I分析根据问题中的数量关系用含X的式子填表由以上分析,用含X的式子表示Y,并求出问题的解(四)函数的实际应用2(山西2009)24(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润Y甲(万元)与进货量X(吨)近似满足函数关系;乙种水果的销售利润Y乙(万元)与进货量X(吨)近似满足函数关系(其中为常数),且进货量为1吨时,销售利润为14万元;进货量为2吨时,销售利润为26万元(1)求Y乙(万元)与X(吨)之间的函数关系式(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为T吨,请你写出这两种水果所获得的销售利润之和W(万元)与T(吨)之间的函数关系式并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少3(2011青岛)22、某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件(1)写出销售量Y件与销售单价X元之间的函数关系式;(2)写出销售该品牌童装获得的利润W元与销售单价X元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少4(2011云南)22、一名男生推铅球,铅球行进高度Y(单位M)与水平距离X(单位M)之间的关系是,铅球运行路线如图(1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4M中考压轴题1(2012山西)26综合与实践如图,在平面直角坐标系中,抛物线YX22X3与X轴交于AB两点,与Y轴交于点C,点D是该抛物线的顶点(1)求直线AC的解析式及BD两点的坐标;(2)点P是X轴上一个动点,过P作直线LAC交抛物线于点Q,试探究随着P点的运动,在抛物线上是否存在点Q,使以点AP、Q、C为顶点的四边形是平行四边形若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由(3)请在直线AC上找一点M,使BDM的周长最小,求出M点的坐标考点二次函数综合题。(2)抛物线上有三个这样的点Q,当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);当点Q在点Q2位置时,点Q2的纵坐标为3,代入抛物线可得点Q2坐标为(1,3);当点Q在Q3位置时,点Q3的纵坐标为3,代入抛物线解析式可得,点Q3的坐标为(1,3);综上可得满足题意的点Q有三个,分别为Q1(2,3),Q2(1,3),Q3(1,3)M点的坐标为(,,)2(山西2010)26在直角梯形OABC中,CBOA,COA90,CB3,OA6,BA3分别以OA、OC边所在直线为X轴、Y轴建立如图1所示的平面直角坐标系(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD5,OE2EB,直线DE交X轴于点F求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在X轴上方的平面内是否存在另一个点N使以O、D、M、N为顶点的四边形是菱形若存在,请求出点N的坐标;若不存在,请说明理由ABDE(第26题图1)FCOMNXY3(2011宁夏)26、在等腰ABC中,ABAC5,BC6动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MNBC将AMN沿MN所在的直线折叠,使点A的对应点为P(1)当MN为何值时,点P恰好落在BC上(2)当MNX,MNP与等腰ABC重叠部分的面积为Y,试写出Y与X的函数关系式当X为何值时,Y的值最大,最大值是多少考点翻折变换(折叠问题);二次函数的最值;等腰三角形的性质;相似三角形的判定与性质。分析(1)首先连接AP,交MN于O,由MNBC将AMN沿MN所在的直线折叠,使点A的对应点为P,即可得AMNABC,则可求得当MN为何值时,点P恰好落在BC上;(2)此题需要分为当AOAD时与当AOAD时去分析,首先由AMNABC,求得各线段的长,然后求MNP与等腰ABC重叠部分的面积,即可得关于X的二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宿舍洗衣机管理制度
- 工程合作商管理制度
- 药品配送夜间管理制度
- 药店中药仓库管理制度
- 药店常规用品管理制度
- 营林项目结账管理制度
- 设备借用使用管理制度
- 设备安全工具管理制度
- 设备数据联动管理制度
- 设备点检包机管理制度
- 《短歌行》《归园田居(其一)》比较阅读
- 人教小学数学五年级下册综合与实践《怎样通知最快》示范公开课教学课件
- 脱不花三十天沟通训练营
- 2023年湖南常德中考语文真题及答案
- “滚球法”计算接闪器保护范围
- 生产专案持续改善工作汇报
- 2022年南通如皋市医疗系统事业编制乡村医生招聘笔试试题及答案解析
- SB/T 10347-2017糖果压片糖果
- GB/T 7689.2-2013增强材料机织物试验方法第2部分:经、纬密度的测定
- GB/T 35124-2017天文望远镜技术要求
- GB/T 1303.4-2009电气用热固性树脂工业硬质层压板第4部分:环氧树脂硬质层压板
评论
0/150
提交评论