




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
69PracticalFailureAnalysisVolume1(5)October2001AnInvestigationoftheDevelopmentofDefectsDuringFlowFormingofHighStrengthThinWallSteelTubesK.M.RajanandK.Narasimhan(Submitted12June2001;inrevisedform6August2001)Flowformingtechnologyhasemergedasapromising,economicalmetalformingtechnologyduetoitsabilitytoprovidehighstrength,highprecision,thinwalledtubeswithexcellentsurfacefinish.ThispaperpresentsexperimentalobservationsofdefectsdevelopedduringflowformingofhighstrengthSAE4130steeltubes.Themajordefectsobservedarefishscaling,prematureburst,diametralgrowth,microcracks,andmacrocracks.Thispaperanalyzesthedefectsandarrivesatthecausativefactorscontributingtothevariousfailuremodes.Keywords:metalforming,inclusions,expertsystem,microstructure,surfacefinishPFANF8(2001)5:69-76ASMInternationalIntroductionFlowformingisapromising,economicalmetalformingtechnologythatcanmeetthechallengingrequirementsofhighspecificstrength,closedimen-sionaltolerances,andexcellentsurfacefinishde-mandedbythedefenseandaerospaceindustries.Therelativelylowtoolingcostandremarkablematerialutilizationduetochiplessmetalformingprovideeconomicdrivers,whiletheabilitytoachievehighstrengthfinishedproductfromlowstrengthstartingmaterialisduetostrainhardening.Flowformingisanincrementalformingprocessthatusesa3-Dvariationofbasicrollingprocessesandcombinesrolling,shearing,andbendingintooneoperation.Itissimilartoneitherupsettingnorswag-ing.Essentiallyapointdeformationmetalformingprocess,flowformingresultsinaparthavingahighlydeformedmicrostructure.Significantincreasesinyieldstrength,ultimatetensilestrength,andhard-ness,andacorrespondingreductioninductility,accompanytheflowformingprocess.Conventionally,tubesareproducedbyhotextru-sionfollowedbydrawingorpilgering.However,itisnotpracticaltohotextrudethinwalltubesbeyondaspecifiedlimit.Drawingisaneasierandlessexpen-siveprocessthanextrusion;therefore,athickwalltubeiscoldextrudedandfinishedonadrawbenchorpilgermill.Thedrawingprocessisessentiallyatensileprocess.Microcracksandotherdefectsinsidethematerialtendtopropagateduringthedraw,leadingtofailure.Theareareductionistypicallylimitedto10%foreachdrawofahardmaterial,andthetotalreductionmayrequireanumberofanneal-ingcycles.1Anincreaseinthenumberofdrawing/annealingcyclesincreasesthecostofproduction.Itisobviouslyveryexpensivetousedrawingoperationstoproducecomponentsfromhard-to-workmater-ials.However,ifdimensionaltolerancesarenotcritical,itisadvisabletousecheapconventionalcolddrawnsteel(CDS)tube.Flowforming,therefore,offersseveraladvantagesoverconventionaltubemakingmethods.TheFlowFormingProcessFlowformingisusedtoproduceaseamlesstubewithtightdimensionaltolerances.Seamlesstubing,theoretically,mayrepresenttheultimateinreliabil-ity.2Ametalblankorpreformisformedoverarotatingmandrel.Themetalblankandthemandrel(whicharelockedtogether)rotate,andtheformingrollerfollowsthemandrelatapresetthathasbeenprogrammedintoaCNCflowformingmachine.Thepreformmetalisplasticizedbythelocalap-plicationofheavycompressiveforcesexertedbyconi-calrollers.Thedeformedmetaltakestheshapeofthemandrel,andproperwallthicknessisachievedbycontrolofthegapbetweentherollersandthemandrel.Flowformingcanbedividedintotwodistinctprocesses:forwardflowformingandreverseflowforming.Inforwardflowforming,rollerfeedanddeformedmaterialmovementareinthesamedirec-tion.Theformedmaterialisundertension,andtheK.M.Rajan,ArmamentResearchandDevelopmentEstablishment,Pune-411021,India.K.Narasimhan,DepartmentofMetallurgicalEngineeringandMaterialsScience,IIT,Bombay-400076,India.Contacte-mail:naramet.iitb.ac.in.AnInvestigationoftheDevelopmentofDefectsDuringFlowForming(continued)70PracticalFailureAnalysisVolume1(5)October2001materialundertherollerexperiencescompressivestress.Inreverseflowforming,rollerfeedandmater-ialmovementareinoppositedirections.Thematerialundertherollerisinacompressedstatewhiletheformedpartisstressfree.Areverseflowformingtechniquewasusedforthepresentstudyandissche-maticallyillustratedinFig.1.ObjectivesThispaperdescribesaninvestigationofthecauseofdefectsandfailuresduringflowformingofthinwallhighstrengthtubesfromAISI4130steel.Theinvestigationincludesstudyofthevariousmetal-lurgicaland/ormachineparameterslikelytocausetheseproblems.Thecommondefectsreportedforflowformingoftubesarediametralgrowth,prematureburst,buildup,fishscaling,andbellmouthing.3Othertypesofdefectsincludeunevenwallthickness,microcracks,andmacrocracks.4,5AdvancedCNC3-rollerflowformingmachinesareabletomanu-facturehighqualityprecisiontubes.However,metallurgicalormaterialdefectssuchasinclusionsandnonuniformgrainstructuremayaffecttubequality.Additionally,selectionofunsuitableformingparametersmayalterthequalityofthetubingpro-duced.Thispaperrelatesthemetallurgicalqualityofthesteeltotheabilitytoachievehighqualitythinwalledflowformedtubing.5,6ExperimentalObservationsBecauseofitsavailability,lowcost,andreasonablygoodcoldformability,SAE4130steelwasselectedforthemanufactureofthinwall,highstrengthseam-lesstubesinpressurevesselapplications.Reverseflowformingwasusedforthesepressurevessels.ThedevelopmentworkdescribedinthispaperusedSAE4130steelthatwasnotelectroslagre-melted.Theinclusionratingsofthisgradeofsteel,basedonASTME45,areasfollows:SulfidesAluminaSilicatesGlobularoxidesThinThickThinThickThinThickThinThick1.0Thedissolvedoxygen,nitrogen,andhydrogeninthesteel,asdeterminedbyanalysis,was22ppmoxygen,110ppmnitrogen,and3ppmhydrogen.A4-axisCNCflowformingmachinewitha3-rollerconfigurationwasusedfortheexperimentalwork.AphotomicrographoftheflowformingmachineisshowninFig.2.Thepreformathickwalledstartingmaterialforflowformingwasfabricatedbyforging(bothupsettinganddrawing),piercingwithtaperedpunches,andmandrelforging,followedbyhardeningandtempering.Theflowformingoperationwascompletedinthreepasseswithoutanyintermediateanneal.TheFig.1SchematicdiagramofreverseflowformingprocessFig.2Four-axisCNCflowformingmachinewitha3-rollerFig.3TrimmingandcuttingoftensilespecimenfromfullyformedtubeMandrel71PracticalFailureAnalysisVolume1(5)October2001hardnessandpercentagethicknessreductionassoc-iatedwitheachpassareshowninTable1.Theflowformedtube,afterundergoingatotalpercentagethicknessreductionofabout88%,wastrimmed,andtensiletestsamplesweretakenfromafullyformedextralengthofthetubeasperASTMA370(Fig.3).ThespecifiedandachievedmechanicalpropertiesanddimensionalaccuraciesarepresentedinTable2.ProofPressureTestingTubesthatsatisfiedthespecifiedmechanicalprop-ertiesanddimensionalaccuracyrequirementsweresubjectedto100%hydraulictesting.Thetubesweresubjectedtoapressure10%abovethemaximumexpectedoperatingpressureforaboutonemin,thencheckedforpermanentset,ifany,andprematurefailure.Notestingininducedfailureorpermanentsetwasaccepted.Afterpassingthistest,thetubesweresubjectedtobursttesting.BurstPressureTestingOnetubeoutofeachgroupmanufacturedfromthesameheatofsteelandlotofprocessedpreformswasrandomlyselectedandsubjectedtoburstpressuretesting.Theburstpressuretestconfirmsthemarginofsafetyoverthemaximumexpectedoperatingpressure.AfewbursttubesareshowninFig.4.DefectsDefectsintheflowformedtubesmaycausefailureintheprooforthebursttests.Thetypesofdefectsandassociatedfailurescanbecategorizedasmicro-cracks,macrocracks,diametralgrowth,ovality,fishscaling,andprematurebursting.Theflowformingprocessoccasionallyintroduceswavinessorbulgesontheouter-faceoftubes.Suchdefectsoccuronlyundercertainworkingconditions.Thisphenomenoniscalled“plasticflowinstabil-ity.”5Kobayashi7analyzedinstabilityinconespin-Table2MechanicalpropertiesanddimensionaltolerancesofflowformedtubeMechanicalPropertiesDimensionalTolerancesUTS0.2%yieldstrength%EIOvalityStraightnessSurfaceroughness(MPa)(MPa)(mm)(mm)CLA(m)Specified1200(min)900(min)6(min)0.2(max)0.15(max)-Actual1250-1350950-11007-80.15-0.200.1-0.15N5-N6Table1FlowformingsequencewiththicknessandhardnessvariationsineachpassPassNo.InitialthicknessFinalthicknessInitialhardnessFinalhardness%thicknessofPreform(mm)(mm)(HRC)(HRC)reduction119.50%9.7521285029.75%4.87528305034.875%2.00303160Fig.4BurstpressuretestedflowformedtubeAnInvestigationoftheDevelopmentofDefectsDuringFlowForming(continued)72PracticalFailureAnalysisVolume1(5)October2001ningandconcludedthatwrinklingontheprespunflangeoftheconeiscausedbyreliefoftheresidualcompressivestressthatarisesinthetraction-freeflange.Theconespinninginstabilityissimilartothewrinklingphenomenonindeepdrawingopera-tions.GurandTirosh5studiedtheplasticflowinstabilityintubespinningandfoundthatinstabilityoccursifthecircumferentiallengthofcontactSoftherollerismuchlongerthantheaxiallengthofcontactL,i.e.,iftherat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隔离酒店管理办法
- 鸟害防治管理办法
- 煤矿瓦斯抽采管理课件
- 黄山工程管理办法
- 人才京郊行管理办法
- 陕西印章管理办法
- 临时供水点管理办法
- 乡镇保洁员管理办法
- 高温救助管理办法
- 防疫轮岗管理办法
- 村子绿化设计方案(3篇)
- 2025浙能集团甘肃有限公司新能源项目招聘22人笔试历年参考题库附带答案详解
- GB/T 45805-2025信控服务机构分类及编码规范
- DB3309-T 112-2024 嵊泗贻贝苗种包装运输通.用技术条件
- 【正版授权】 IEC 60931-2:2025 EN-FR Shunt power capacitors of the non-self-healing type for AC systems having a rated voltage up to and including 1 000 V - Part 2: Ageing test and destru
- 班主任安全管理培训讲座
- 2024年云南省罗平县人民医院公开招聘护理工作人员试题带答案详解
- 2025年农业灌溉站租赁合同范本
- 高新技术产业厂房抵押贷款合同范本
- 冲压工厂批次管理办法
- 【历史 广东卷】2025年广东省高考招生统一考试真题历史试卷(真题+答案)
评论
0/150
提交评论