




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文:RealizationofNeuralNetworkInverseSystemwithPLCinVariableFrequencySpeed-RegulatingSystemAbstract.Thevariablefrequencyspeed-regulatingsystemwhichconsistsofaninductionmotorandageneralinverter,andcontrolledbyPLCiswidelyusedinindustrialfield.However,forthemultivariable,nonlinearandstronglycoupledinductionmotor,thecontrolperformanceisnotgoodenoughtomeettheneedsofspeed-regulating.Themathematicmodelofthevariablefrequencyspeed-regulatingsysteminvectorcontrolmodeispresentedanditsreversibilityhasbeenproved.Byconstructinganeuralnetworkinversesystemandcombiningitwiththevariablefrequencyspeed-regulatingsystem,apseudo-linearsystemiscompleted,andthenalinearclose-loopisdesignedtogethighperformance.UsingPLC,aneuralnetworkinversesystemcanberealizedinsystem.Theresultsofexperimentshaveshownthattheperformancesofvariablefrequencyspeed-regulatingsystemcanbeimprovedgreatlyandthepracticabilityofneuralnetworkinversecontrolwastestified.1.IntroductionInrecentyears,withpowerelectronictechnology,microelectronictechnologyandmoderncontroltheoryinfiltratingintoACelectricdrivingsystem,invertershavebeenwidelyusedinspeed-regulatingofACmotor.Thevariablefrequencyspeed-regulatingsystemwhichconsistsofaninductionmotorandageneralinverterisusedtotaketheplaceofDCspeed-regulatingsystem.Becauseofterribleenvironmentandseveredisturbanceinindustrialfield,thechoiceofcontrollerisanimportantproblem.Inreference123,Neuralnetworkinversecontrolwasrealizedbyusingindustrialcontrolcomputerandseveraldataacquisitioncards.Theadvantagesofindustrialcontrolcomputerarehighcomputationspeed,greatmemorycapacityandgoodcompatibilitywithothersoftwareetc.Butindustrialcontrolcomputeralsohassomedisadvantagesinindustrialapplicationsuchasinstabilityandfallibilityandworsecommunicationability.PLCcontrolsystemisspecialdesignedforindustrialenvironmentapplication,anditsstabilityandreliabilityaregood.PLCcontrolsystemcanbeeasilyintegratedintofieldbuscontrolsystemwiththehighabilityofcommunicationconfiguration,soitiswildlyusedinrecentyears,anddeeplywelcomed.Sincethesystemcomposedofnormalinverterandinductionmotorisacomplicatednonlinearsystem,traditionalPIDcontrolstrategycouldnotmeettherequirementforfurthercontrol.Therefore,howtoenhancecontrolperformanceofthissystemisveryurgent.Theneuralnetworkinversesystem45isanovelcontrolmethodinrecentyears.Thebasicideaisthat:foragivensystem,aninversesystemoftheoriginalsystemiscreatedbyadynamicneuralnetwork,andthecombinationsystemofinverseandobjectistransformedintoakindofdecouplingstandardizedsystemwithlinearrelationship.Subsequently,alinearclose-loopregulatorcanbedesignedtoachievehighcontrolperformance.Theadvantageofthismethodiseasilytoberealizedinengineering.Thelinearizationanddecouplingcontrolofnormalsystemcanrealizeusingthismethod.CombiningtheneuralnetworkinverseintoPLCcaneasilymakeuptheinsufficiencyofsolvingtheproblemsofnonlinearandcouplinginPLCcontrolsystem.Thiscombinationcanpromotetheapplicationofneuralnetworkinverseintopracticetoachieveitsfulleconomic.Inthispaper,firstlytheneuralnetworkinversesystemmethodisintroduced,andmathematicmodelofthevariablefrequencyspeed-regulatingsysteminvectorcontrolmodeispresented.Thenareversibleanalysisofthesystemisperformed,andthemethodsandstepsaregiveninconstructingNN-inversesystemwithPLCcontrolsystem.Finally,themethodisverifiedintraditionalPIcontrolandNN-inversecontrol.2.NeuralNetworkInverseSystemControlMethodThebasicideaofinversecontrolmethod6isthat:foragivensystem,an-thintegralinversesystemoftheoriginalsystemiscreatedbyfeedbackmethod,andcombiningtheinversesystemwithoriginalsystem,akindofdecouplingstandardizedsystemwithlinearrelationshipisobtained,whichisnamedasapseudolinearsystemasshowninFig.1.Subsequently,alinearclose-loopregulatorwillbedesignedtoachievehighcontrolperformance.Inversesystemcontrolmethodwiththefeaturesofdirect,simpleandeasytounderstanddoesnotlikedifferentialgeometrymethod7,whichisdiscussestheproblemsingeometrydomain.Themainproblemistheacquisitionoftheinversemodelintheapplications.Sincenon-linearsystemisacomplexsystem,anddesiredstrictinverseisverydifficulttoobtain,evenimpossible.Theengineeringapplicationofinversesystemcontroldontmeettheexpectations.Asneuralnetworkhasnon-linearapproximateability,especiallyfornonlinearthepowerfultooltosolvetheproblem.athNNinversesystemintegratedinversesystemwithnon-linearabilityoftheneuralnetworkcanavoidthetroublesofinversesystemmethod.Thenitispossibletoapplyinversecontrolmethodtoacomplicatednon-linearsystem.athNNinversesystemmethodneedslesssysteminformationsuchastherelativeorderofsystem,anditiseasytoobtaintheinversemodelbyneuralnetworktraining.CascadingtheNNinversesystemwiththeoriginalsystem,apseudo-linearsystemiscompleted.Subsequently,alinearclose-loopregulatorwillbedesigned.3.MathematicModelofInductionMotorVariableFrequencySpeed-RegulatingSystemandItsReversibilityInductionmotorvariablefrequencyspeed-regulatingsystemsuppliedbytheinverteroftrackingcurrentSPWMcanbeexpressedby5thordernonlinearmodelind-qtwo-phaserotatingcoordinate.Themodelwassimplifiedasa3-ordernonlinearmodel.Ifthedelayofinverterisneglected,themodelisexpressedasfollows:(1)wheredenotessynchronousanglefrequency,andisrotatespeed.arestatorscurrent,andarerotorsfluxlinkagein(d,q)axis.isnumberofpoles.ismutualinductance,andisrotorsinductance.Jismomentofinertia.isrotorstimeconstant,andisloadtorque.Invectormode,thenSubstituteditintoformula(1),then(2)Takingreversibilityanalysesofforum(2),thenThestatevariablesarechosenasfollowsInputvariablesareTakingthederivativeonoutputinformula(4),then(5)(6)ThentheJacobimatrixisRealizationofNeuralNetworkInverseSystemwithPLC(7)(8)Assoandsystemisreversible.Relative-orderofsystemisWhentheinverterisrunninginvectormode,thevariabilityoffluxlinkagecanbeneglected(consideringthefluxlinkagetobeinvariablenessandequaltotherating).Theoriginalsystemwassimplifiedasaninputandanoutputsystemconcludedbyforum(2).Accordingtoimplicitfunctionontologytheorem,inversesystemofformula(3)canbeexpressedas(9)Whentheinversesystemisconnectedtotheoriginalsysteminseries,thepseudolinearcompoundsystemcanbebuiltasthetypeof4.RealizationStepsofNeuralNetworkInverseSystem4.1AcquisitionoftheInputandOutputTrainingSamplesTrainingsamplesareextremelyimportantinthereconstructionofneuralnetworkinversesystem.Itisnotonlyneedtoobtainthedynamicdataoftheoriginalsystem,butalsoneedtoobtainthestaticdate.Referencesignalshouldincludealltheworkregionoforiginalsystem,whichcanbeensuretheapproximateability.Firstlythestepofactuatingsignalisgivencorrespondingevery10HZform0HZto50HZ,andtheresponsesofopenloopareobtain.Secondlyaran
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语言发音训练及单词记忆技巧
- 船舶运营安全标准与管理手册
- 互联网金融创新商业模式分析报告
- 数字营销内容创作策略大全
- 医疗机构消毒技术规范实施手册
- 快消品市场竞争分析及营销对策
- 激励员工提升工作积极性的话术
- 高校职业规划书撰写与提升技巧
- 幼儿园特殊儿童关爱与融入方案
- 大型商场安保服务实施细则
- 2025年机关事业单位工勤技能人员考试题库(附答案)
- 基层医疗卫生机构常见新生儿疾病诊疗指南新生儿复苏(2025年)
- 2025年小学诗词大会题库(含答案)
- 2025至2030中国反作用轮(RW)行业产业运行态势及投资规划深度研究报告
- 【行业分析】2025年中国智慧油气行业市场规模、产业链全景及市场竞争格局分析报告
- 第10课 公共场所言行文明 第2课时(课件)2025-2026学年道德与法治三年级上册统编版
- 医院新技术新项目申请
- (高清版)DBJ∕T 13-493-2025 《装配式混凝土建筑深化设计标准》
- 人教版二年级数学上册第一单元测试卷(含答案)
- 2024-2025学年河南省郑州外国语中学九年级上学期第一次月考道德与法治试卷
- 2025至2030中国氧化铝氧化锆磨料行业发展趋势分析与未来投资战略咨询研究报告
评论
0/150
提交评论