




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HybridPosition/ForceControloftheSCORBOT-ER4pcManipulatorwithNeuralCompensationofNonlinearitiesPiotrGierlakRzeszowUniversityofTechnology,DepartmentofAppliedMechanicsandRobotics8PowstancowWarszawySt.,35-959Rzeszow,P.plAbstract.Theproblemofthemanipulatorhybridposition/forcecon-trolisnottrivialbecausethemanipulatorisanonlinearobject,whoseparametersmaybeunknown,variableandtheworkingconditionsarechangeable.Theneuralcontrolsystemenablesthemanipulatortobe-havecorrectly,evenifthemathematicalmodelofthecontrolobjectisunknown.Inthispaper,thehybridposition/forcecontrollerwithaneu-ralcompensationofnonlinearitiesfortheSCORBOT-ER4pcroboticmanipulatorispresented.Thepresentedcontrollawandadaptivelawguaranteepracticalstabilityoftheclosed-loopsysteminthesenseofLyapunov.Theresultsofanumericalsimulationarepresented.Keywords:NeuralNetworks,RoboticManipulator,TrackingControl,ForceControl.1IntroductionRoboticmanipulatorsaredeviceswhichfinddierentapplicationsinmanydo-mainsoftheeconomy.Therequirementsinrelationtoprecisionofmotionandautonomyofmanipulatorsareincreasingaswellasthetasksperformedbythemaremoreandmorecomplex.Incontemporaryindustrialapplicationsitisdesiredforthemanipulatortoexertspecifiedforcesandmovealongaprescribedpath.Manipulatorsareobjectswithnonlinearanduncertaindynamics,withunknownandvariableparameters(masses,massmomentsofinertia,frictioncoecients),whichoperateinchangeableconditions.Controlofsuchcomplexsystemsisveryproblematic.Thecontrolsystemhastogeneratesuchcontrolsignalsthatwillguaranteetheexecutionofmovementalongapathwithasuitableforceandwithdesiredprecisioninspiteofthechangeableoperatingconditions.Inthecontrolsystemsofindustrialmanipulators,thecomputedtorqueme-thod1,2fornon-linearitycompensationisused.However,theseapproachesrequirepreciseknowledgeaboutthemathematicalmodel(thestructureofmo-tionequationswithcoecients)ofthecontrolobject.Moreover,insuchanapproach,parametersinthecompensatorhavenominalvaluessothecontrolL.Rutkowskietal.(Eds.):ICAISC2012,PartII,LNCS7268,pp.433441,2012.cSpringer-VerlagBerlinHeidelberg2012434P.Gierlaksystemactswithouttakingintoaccountthechangeableoperatingconditions.Intheliteratureexistsmanyvariationofalgorithms,inwhichparametersofthemathematicalmodelofmanipulatorareadapted1,2.Howevertheseapproachesdonoteliminatetheproblemwithstructuraluncertaintyofthemodel.Inconnectionwiththepresentdiculties,neuralcontroltechniqueswerede-veloped3,4,5,6.Inthesemethodsthemathematicalmodelisunnecessary.Thesetechniquesareusedinhybridposition/forcecontroller.Inworks7,8suchcon-trollershavebeenpresented.Butinthefirstoftheworksonlyforcenormaltothecontactsurfaceistakingintoaccount,andinthesecondworksomeassumptionishardtosatisfyinpracticalapplications,namelysomestinessmatrixwhichcharacterizesfeaturesofenvironmentandallowstocalculatecontactforces,mustbeknown.Inpreviousauthorspaperonlypositioncontrollershavebeenconsidered.Inpresentpaperhybridposition/forceneuralcontrollerisshown.Thisapproachtakesintoaccountallforces/momentswhichactsontheend-eector.Theseforces/momentsaremeasuredbysensorlocatedintheend-eector.2DescriptionoftheSCORBOT-ER4pcRoboticManipulatorTheSCORBOT-ER4pcroboticmanipulatorispresentedinFig.1.Itisdrivenbydirect-currentmotorswithgearsandopticalencoders.Themanipulatorhas5rotationalkinematicpairs:thearmofthemanipulatorhas3degreesoffreedomwhereasthegripperhas2degrees.a)A1q3yzxOBCOOO=d1OA=lAB=lBC=lCD=d1235q1q223u2u1u3q4D4u4q5u5b)contactsurfacec108FEFig.1.a)SCORBOT-ER4pcroboticmanipulator,b)schemeThetransformationfromjointspacetoCartesianspaceisgivenbythefol-lowingequationy=k(q),(1)HybridPosition/ForceControloftheSCORBOT-ER4pcManipulator435whereqRnisavectorofgeneralizedcoordinates(anglesofrotationoflinks),k(q)isakinematicsfunction,yRmisavectorofaposition/orientationoftheend-eector(pointD).Dynamicalequationsofmotionoftheanalysedmodelareinthefollowingform7,9:M(q)q+C(q,q)q+F(q)+G(q)+d(t)=u+JTh(q)+F,(2)whereM(q)Rnxnisaninertiamatrix,C(q,q)RnisavectorofcentrifugalandCoriolisforces/moments,F(q)Rnisafrictionvector,G(q)Rnisagravityvector,d(t)Rnisavectorofdisturbancesboundedby|d|0,uRnisacontrolinputvector,Jh(q)Rm1xnisaJacobianmatrixassociatedwiththecontactsurfacegeometry,Rm1isavectorofconstrainingforcesexertednormallyonthecontactsurface(Lagrangemultiplier),FRnisavectorofforces/momentsinjoints,whichcomefromforces/momentsFERmappliedtotheend-eector(excepttheconstrainingforces).ThevectorFisgivenbyF=JbT(q)FE,(3)whereJb(q)RmxnisageometricJacobianinbody2.TheJacobianmatrixJh(q)canbecalculatedinthefollowingwayJh(q)=h(q)q,(4)whereh(q)=0isanequationoftheholonomicconstraint,whichdescribesthecontactsurface.Thisequationreducesthenumberofdegreesoffreedomton1=nm1,sotheanalysedsystemcanbedescribedbythereducedpositionvariable1Rn17.Theremainderofvariablesdependon1inthefollowingway2=(1),(5)where2Rm1,andarisefromtheholonomicconstraint.Thevectorofgeneralizedcoordinatesmaybewrittenasq=T1T2T.LetdefinetheextendedJacobian7L(1)=bracketleftbiggIn11bracketrightbigg,(6)whereIn1Rn1xn1isanidentitymatrix.Thisallowstowritetherelations:q=L(1)1,(7)q=L(1)1+L(1)1,(8)andwriteareducedorderdynamicsintermsof1,as:M(1)L(1)1+V1(1,1)1+F(1)+G(1)+d(t)=u+JTh(1)+JbT(1)FE,(9)whereV1(1,1)=M(1)L(1)+C(1,1)L(1).Pre-multiplyingeq.(9)byLT(1)andtakingintoaccountthatJh(1)L(1)=0,thereducedorderdyna-micsisgivenby:M1+V11+F+G+d=LTu,(10)whereM=LTML,V1=LTV1,F=LTF,G=LTG,d=LTbracketleftbigdJbTFEbracketrightbig.436P.Gierlak3NeuralNetworkHybridControlTheaimofahybridposition/forcecontrolistofollowadesiredtrajectoryofmotion1dRn1,andexertdesiredcontactforcedRm1normallytothesurface.Bydefiningamotionerrore,afilteredmotionerrors,aforceerrorandanauxiliarysignal1as:e=1d1,(11)s=e+e,(12)=d,(13)1=1d+e,(14)whereisapositivediagonaldesignmatrix,thedynamicequation(10)maybewrittenintermsofthefilteredmotionerrorasMs=V1s+LTf(x)+LTbracketleftbigdJbTFEbracketrightbigLTu,(15)withanonlinearfunctionf(x)=ML1+V11+F+G,(16)wherex=bracketleftBigeTeTT1dvT1dT1dbracketrightBigT.Themathematicalstructureofhybridposi-tion/forcecontrollerhasaformof7u=f(x)+KDLsJThbracketleftBigd+KFbracketrightBig,(17)whereKDandKFarepositivedefinitematrixesofpositionandforcegain,isarobustifyingterm,f(x)approximatesthefunction(16).Thisfunctionmaybeapproximatedbytheneuralnetwork.Inthisworkaty
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1 Teenage Life 主题词汇专项练习(含答案) -2025-2026学年高中英语人教版(2019)必修第一册
- 2025年事业单位工勤技能-湖南-湖南中式烹调师一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北计算机信息处理员五级初级历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北水利机械运行维护工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北收银员三级(高级工)历年参考题库含答案解析
- 2025年环境监测智能化在城市空气质量预报中的应用与数据质量控制
- 2025年事业单位工勤技能-海南-海南管道工四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-浙江-浙江计算机信息处理员五级初级历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-浙江-浙江工程测量员五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南铸造工二级(技师)历年参考题库典型考点含答案解析
- 2025年江苏省苏豪控股集团有限公司校园招聘笔试备考试题及答案详解(必刷)
- (完整)中小学“学宪法、讲宪法”知识竞赛题库及答案
- 2025年行政执法人员执法证考试必考多选题库及答案(共300题)
- 《工程勘察设计收费标准》(2002年修订本)
- 个人房地产抵押合同书
- 车间员工技能管理办法
- 医院零星维修管理制度及零星维修审批单
- DB11T 1581-2018 生产经营单位应急能力评估规范
- 汶川地震波时程记录(卧龙3向)
- 吴迪完胜股市学习笔记
- HB 4-1-2020 扩口管路连接件通用规范
评论
0/150
提交评论