已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HybridPosition/ForceControloftheSCORBOT-ER4pcManipulatorwithNeuralCompensationofNonlinearitiesPiotrGierlakRzeszowUniversityofTechnology,DepartmentofAppliedMechanicsandRobotics8PowstancowWarszawySt.,35-959Rzeszow,P.plAbstract.Theproblemofthemanipulatorhybridposition/forcecon-trolisnottrivialbecausethemanipulatorisanonlinearobject,whoseparametersmaybeunknown,variableandtheworkingconditionsarechangeable.Theneuralcontrolsystemenablesthemanipulatortobe-havecorrectly,evenifthemathematicalmodelofthecontrolobjectisunknown.Inthispaper,thehybridposition/forcecontrollerwithaneu-ralcompensationofnonlinearitiesfortheSCORBOT-ER4pcroboticmanipulatorispresented.Thepresentedcontrollawandadaptivelawguaranteepracticalstabilityoftheclosed-loopsysteminthesenseofLyapunov.Theresultsofanumericalsimulationarepresented.Keywords:NeuralNetworks,RoboticManipulator,TrackingControl,ForceControl.1IntroductionRoboticmanipulatorsaredeviceswhichfinddierentapplicationsinmanydo-mainsoftheeconomy.Therequirementsinrelationtoprecisionofmotionandautonomyofmanipulatorsareincreasingaswellasthetasksperformedbythemaremoreandmorecomplex.Incontemporaryindustrialapplicationsitisdesiredforthemanipulatortoexertspecifiedforcesandmovealongaprescribedpath.Manipulatorsareobjectswithnonlinearanduncertaindynamics,withunknownandvariableparameters(masses,massmomentsofinertia,frictioncoecients),whichoperateinchangeableconditions.Controlofsuchcomplexsystemsisveryproblematic.Thecontrolsystemhastogeneratesuchcontrolsignalsthatwillguaranteetheexecutionofmovementalongapathwithasuitableforceandwithdesiredprecisioninspiteofthechangeableoperatingconditions.Inthecontrolsystemsofindustrialmanipulators,thecomputedtorqueme-thod1,2fornon-linearitycompensationisused.However,theseapproachesrequirepreciseknowledgeaboutthemathematicalmodel(thestructureofmo-tionequationswithcoecients)ofthecontrolobject.Moreover,insuchanapproach,parametersinthecompensatorhavenominalvaluessothecontrolL.Rutkowskietal.(Eds.):ICAISC2012,PartII,LNCS7268,pp.433441,2012.cSpringer-VerlagBerlinHeidelberg2012434P.Gierlaksystemactswithouttakingintoaccountthechangeableoperatingconditions.Intheliteratureexistsmanyvariationofalgorithms,inwhichparametersofthemathematicalmodelofmanipulatorareadapted1,2.Howevertheseapproachesdonoteliminatetheproblemwithstructuraluncertaintyofthemodel.Inconnectionwiththepresentdiculties,neuralcontroltechniqueswerede-veloped3,4,5,6.Inthesemethodsthemathematicalmodelisunnecessary.Thesetechniquesareusedinhybridposition/forcecontroller.Inworks7,8suchcon-trollershavebeenpresented.Butinthefirstoftheworksonlyforcenormaltothecontactsurfaceistakingintoaccount,andinthesecondworksomeassumptionishardtosatisfyinpracticalapplications,namelysomestinessmatrixwhichcharacterizesfeaturesofenvironmentandallowstocalculatecontactforces,mustbeknown.Inpreviousauthorspaperonlypositioncontrollershavebeenconsidered.Inpresentpaperhybridposition/forceneuralcontrollerisshown.Thisapproachtakesintoaccountallforces/momentswhichactsontheend-eector.Theseforces/momentsaremeasuredbysensorlocatedintheend-eector.2DescriptionoftheSCORBOT-ER4pcRoboticManipulatorTheSCORBOT-ER4pcroboticmanipulatorispresentedinFig.1.Itisdrivenbydirect-currentmotorswithgearsandopticalencoders.Themanipulatorhas5rotationalkinematicpairs:thearmofthemanipulatorhas3degreesoffreedomwhereasthegripperhas2degrees.a)A1q3yzxOBCOOO=d1OA=lAB=lBC=lCD=d1235q1q223u2u1u3q4D4u4q5u5b)contactsurfacec108FEFig.1.a)SCORBOT-ER4pcroboticmanipulator,b)schemeThetransformationfromjointspacetoCartesianspaceisgivenbythefol-lowingequationy=k(q),(1)HybridPosition/ForceControloftheSCORBOT-ER4pcManipulator435whereqRnisavectorofgeneralizedcoordinates(anglesofrotationoflinks),k(q)isakinematicsfunction,yRmisavectorofaposition/orientationoftheend-eector(pointD).Dynamicalequationsofmotionoftheanalysedmodelareinthefollowingform7,9:M(q)q+C(q,q)q+F(q)+G(q)+d(t)=u+JTh(q)+F,(2)whereM(q)Rnxnisaninertiamatrix,C(q,q)RnisavectorofcentrifugalandCoriolisforces/moments,F(q)Rnisafrictionvector,G(q)Rnisagravityvector,d(t)Rnisavectorofdisturbancesboundedby|d|0,uRnisacontrolinputvector,Jh(q)Rm1xnisaJacobianmatrixassociatedwiththecontactsurfacegeometry,Rm1isavectorofconstrainingforcesexertednormallyonthecontactsurface(Lagrangemultiplier),FRnisavectorofforces/momentsinjoints,whichcomefromforces/momentsFERmappliedtotheend-eector(excepttheconstrainingforces).ThevectorFisgivenbyF=JbT(q)FE,(3)whereJb(q)RmxnisageometricJacobianinbody2.TheJacobianmatrixJh(q)canbecalculatedinthefollowingwayJh(q)=h(q)q,(4)whereh(q)=0isanequationoftheholonomicconstraint,whichdescribesthecontactsurface.Thisequationreducesthenumberofdegreesoffreedomton1=nm1,sotheanalysedsystemcanbedescribedbythereducedpositionvariable1Rn17.Theremainderofvariablesdependon1inthefollowingway2=(1),(5)where2Rm1,andarisefromtheholonomicconstraint.Thevectorofgeneralizedcoordinatesmaybewrittenasq=T1T2T.LetdefinetheextendedJacobian7L(1)=bracketleftbiggIn11bracketrightbigg,(6)whereIn1Rn1xn1isanidentitymatrix.Thisallowstowritetherelations:q=L(1)1,(7)q=L(1)1+L(1)1,(8)andwriteareducedorderdynamicsintermsof1,as:M(1)L(1)1+V1(1,1)1+F(1)+G(1)+d(t)=u+JTh(1)+JbT(1)FE,(9)whereV1(1,1)=M(1)L(1)+C(1,1)L(1).Pre-multiplyingeq.(9)byLT(1)andtakingintoaccountthatJh(1)L(1)=0,thereducedorderdyna-micsisgivenby:M1+V11+F+G+d=LTu,(10)whereM=LTML,V1=LTV1,F=LTF,G=LTG,d=LTbracketleftbigdJbTFEbracketrightbig.436P.Gierlak3NeuralNetworkHybridControlTheaimofahybridposition/forcecontrolistofollowadesiredtrajectoryofmotion1dRn1,andexertdesiredcontactforcedRm1normallytothesurface.Bydefiningamotionerrore,afilteredmotionerrors,aforceerrorandanauxiliarysignal1as:e=1d1,(11)s=e+e,(12)=d,(13)1=1d+e,(14)whereisapositivediagonaldesignmatrix,thedynamicequation(10)maybewrittenintermsofthefilteredmotionerrorasMs=V1s+LTf(x)+LTbracketleftbigdJbTFEbracketrightbigLTu,(15)withanonlinearfunctionf(x)=ML1+V11+F+G,(16)wherex=bracketleftBigeTeTT1dvT1dT1dbracketrightBigT.Themathematicalstructureofhybridposi-tion/forcecontrollerhasaformof7u=f(x)+KDLsJThbracketleftBigd+KFbracketrightBig,(17)whereKDandKFarepositivedefinitematrixesofpositionandforcegain,isarobustifyingterm,f(x)approximatesthefunction(16).Thisfunctionmaybeapproximatedbytheneuralnetwork.Inthisworkaty
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 枣庄市重点中学2025年化学高二上期末联考试题含解析
- 天津大学《舆论研究》2024-2025学年第一学期期末试卷
- 垃圾分类推动的环保产业分析
- 复合土工膜顶破强力试验记录
- 核心考点03 诗歌语言-2026年高考《语文》一轮复习高效培优系列讲义
- 毕业生论文老师评语-图文
- 小米手机竞争战略分析(BCG分析 )
- 会计学专业毕业生论文选题参考
- 学士学位论文导师评语
- 课程设计评审表评语模板
- 2025年数字金融行业数字金融与金融科技研究报告及未来发展趋势
- 中国马克思主义与当代2024版教材课后思考题答案
- 老年人的养老规划方案
- 哈萨克斯坦劳动法中文版
- 《锂电池产品成品规格书》
- 业主委员会成员推荐表
- 期货基础知识(期货入门)
- 房产公司施工图设计标准
- YY/T 1603-2018医用内窥镜内窥镜功能供给装置摄像系统
- GB/T 615-2006化学试剂沸程测定通用方法
- 土的孔隙率试验检测报告
评论
0/150
提交评论