




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学教案选修修全套【选修12教案全套】目录目录I第一章统计案例111回归分析的基本思想及其初步应用(一)111回归分析的基本思想及其初步应用(二)211回归分析的基本思想及其初步应用(三)211回归分析的基本思想及其初步应用(四)312独立性检验的基本思想及其初步应用(一)412独立性检验的基本思想及其初步应用(二)5第二章推理与证明6211合情推理(一)6211合情推理(二)7212演绎推理8221综合法和分析法(一)9221综合法和分析法(二)9222反证法10第三章数系的扩充与复数的引入12311数系的扩充与复数的概念12312复数的几何意义12321复数的代数形式的加减运算13322复数的代数形式的乘除运算14第四章框图1641流程图1642结构图18第一章统计案例第一课时11回归分析的基本思想及其初步应用(一)教学要求通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用教学重点了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法相关指数和残差分析教学难点解释残差变量的含义,了解偏差平方和分解的思想教学过程一、复习准备1提问“名师出高徒”这句彦语的意思是什么有名气的老师就一定能教出厉害的学生吗这两者之间是否有关2复习函数关系是一种确定性关系,而相关关系是一种非确定性关系回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤收集数据作散点图求回归直线方程利用方程进行预报二、讲授新课1教学例题例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示编号12345678身高/CM165165157170175165155170体重/KG4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172CM的女大学生的体重(分析思路教师演示学生整理)第一步作散点图第二步求回归方程第三步代值计算提问身高为172CM的女大学生的体重一定是60316KG吗不一定,但一般可以认为她的体重在60316KG左右解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数YX来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系)YBXA在数据表中身高为165CM的3名女大学生的体重分别为48KG、57KG和61KG,如果能用一次函数来描述体重与身高的关系,那么身高为165CM的3名女在学生的体重应相同这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性E回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分当残差变量YXE恒等于0时,线性回归模型就变成一次函数模型因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式2相关系数相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义3小结求线性回归方程的步骤、线性回归模型与一次函数的不同第二课时11回归分析的基本思想及其初步应用(二)教学要求通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用010203040506070150155160165170175180身高/CM体重/KG教学重点了解评价回归效果的三个统计量总偏差平方和、残差平方和、回归平方和教学难点了解评价回归效果的三个统计量总偏差平方和、残差平方和、回归平方和教学过程一、复习准备1由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响2为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关在多大程度上与随机误差有关我们引入了评价回归效果的三个统计量总偏差平方和、残差平方和、回归平方和二、讲授新课1教学总偏差平方和、残差平方和、回归平方和(1)总偏差平方和所有单个样本值与样本均值差的平方和,即21NIISTY残差平方和回归值与样本值差的平方和,即A21NIIISEY回归平方和相应回归值与样本均值差的平方和,即IIR(2)学习要领注意、的区别;预报变量的变化程度可以分解为由解释变量引起的变化程IYAI度与残差变量的变化程度之和,即;当总偏差平方和相对固定A222111NNNIIIIIIIYYY时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率A221NIIIIIRY的值越大,说明残差平方和越小,也就是说模型拟合的效果越好2R2教学例题例2关于与有如下数据XY24568Y3040605070为了对、两个变量进行统计分析,现有以下两种线性模型,试比517YX17YX较哪一个模型拟合的效果更好分析既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论(答案,84582,所以甲选用的模型A5221115084IIIIIYR21RA521802IIIIIY拟合效果较好)3小结分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏第三课时11回归分析的基本思想及其初步应用(三)教学要求通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用教学重点通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法教学难点了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较教学过程一、复习准备1给出例3一只红铃虫的产卵数和温度有关,现收集了7组观测数据列于下表中,试建立与之YXYX间的回归方程温度/XC21232527293235产卵数个Y711212466115325(学生描述步骤,教师演示)2讨论观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系二、讲授新课1探究非线性回归方程的确定如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线Y的周围(其中是待定2C1EX12,C的参数),故可用指数函数模型来拟合这两个变量在上式两边取对数,得,再令,则,而与间的关系如下21LNLYCXLNZY2LNZCZX21232527293235Z1946239830453178419047455784观察与的散点图,可以发现变换后样本点分布在一条直X线的附近,因此可以用线性回归方程来拟合利用计算器算得,与间的线性384,027ABZX回归方程为,因此红铃虫的产卵数对温度的非线027Z性回归方程为384XYE利用回归方程探究非线性回归问题,可按“作散点图建模确定方程”这三个步骤进行其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题2小结用回归方程探究非线性回归问题的方法、步骤三、巩固练习为了研究某种细菌随时间X变化,繁殖的个数,收集数据如下天数X/天123456繁殖个数Y/个612254995190(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;(2)试求出预报变量对解释变量的回归方程(答案所求非线性回归方程为)06912YEX第四课时11回归分析的基本思想及其初步应用(四)教学要求通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用教学重点通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果教学难点了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较教学过程一、复习准备1提问在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数和温度间的关系,YX还可用其它函数模型来拟合吗2讨论能用二次函数模型来拟合上述两个变量间的关系吗(令,则,234YCX2T34CT此时与间的关系如下YT观察与Y的散点图,T可以发现样本点并不分布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线来拟合与之234YCXYXT441529625729841102412257112124661153250100200300400010203040温度产卵数01234567010203040XZ0100200300400050010001500TY间的关系)小结也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏二、讲授新课1教学残差分析残差样本值与回归值的差叫残差,即AIIIEY残差分析通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析残差图以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高2例3中的残差分析计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果残差平方和越小的模型,拟合的效果越好由于两种模型下的残差平方和分别为1450673和15448432,故选用指数函数模型的拟合效果远远优于选用二次函数模型(当然,还可用相关指数刻画回归效果)3小结残差分析的步骤、作用三、巩固练习练习教材P13第1题第一课时12独立性检验的基本思想及其初步应用(一)教学要求通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性教学重点理解独立性检验的基本思想及实施步骤教学难点了解独立性检验的基本思想、了解随机变量的含义2K教学过程一、复习准备回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤二、讲授新课1教学与列联表相关的概念分类变量变量的不同“值”表示个体所属的不同类别的变量称为分类变量分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义如用“0”表示“男”,用“1”表示“女”列联表分类变量的汇总统计表(频数表)一般我们只研究每个分类变量只取两个值,这样的列联表称为如吸烟2与患肺癌的列联表2教学三维柱形图和二维条形图的概念由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3独立性检验的基本思想独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论)列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体独立性检验的步骤(略)及原理(与反证法类似)不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965反证法假设检验要证明结论A备择假设H1在A不成立的前提下进行推理在H不成立的条件下,即H成立的条件下进行推理0推出矛盾,意味着结论A成立推出有利于H成立的小概率事件(概率不超过的事件)发1生,意味着H成立的可能性(可能性为(1)很大没有找到矛盾,不能对A下任何结论,即反证法不成功推出有利于H成立的小概率事件不发生,接受原假设1上例的解决步骤第一步提出假设检验问题H吸烟与患肺癌没有关系H吸烟与患肺癌有关系01第二步选择检验的指标(它越小,原假设“H吸烟与患肺癌没22KNADBC0有关系”成立的可能性越大;它越大,备择假设“H吸烟与患肺癌有关系”成立的可能性越大1第三步查表得出结论PK2K0500400250150100050025001000050001K045507081323207227063845024663578791083第二课时12独立性检验的基本思想及其初步应用(二)教学要求通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性教学重点理解独立性检验的基本思想及实施步骤教学难点了解独立性检验的基本思想、了解随机变量的含义2K教学过程教学过程一、复习准备独立性检验的基本步骤、思想二、讲授新课1教学例1例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系你所得的结论在什么范围内有效第一步教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步由学生计算出的值;2K第四步解释结果的含义通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广2教学例2例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得到的观察值在多大程度上可以认为高中生的性别与是否数学课程之间有2K4513K关系为什么(学生自练,教师总结)强调使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”如果这2384105PK个前提不成立,上面的概率估计式就不一定正确;结论有95的把握认为“性别与喜欢数学课程之间有关系”的含义;在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画2K相应的图形,但是图形的直观性也不可忽视3小结独立性检验的方法、原理、步骤三、巩固练习某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表请问有多大把握认为“高中生学习状况与生理健康有关”第二章推理与证明第一课时211合情推理(一)教学要求结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用教学重点能利用归纳进行简单的推理教学难点用归纳进行推理,作出猜想教学过程一、新课引入1哥德巴赫猜想观察422,633,853,1055,1257,1277,16133,18117,20137,501337,100397,猜测任一偶数(除去2,它本身是一素数)可以表示成两个素数之和1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“12”2费马猜想法国业余数学家之王费马(16011665)在1640年通过对,0213F,的观察,发现其结果都是素数,125F217F32157F4216537F于是提出猜想对所有的自然数,任何形如的数都是素数后来瑞士数学家欧拉,发现N2N不是素数,推翻费马猜想524964603四色猜想1852年,毕业于英国伦敦大学的弗南西斯格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,四色猜想成了世界数学界关注的问题1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明二、讲授新课1教学概念概念由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理简言之,归纳推理是由部分到整体、由个别到一般的推理归纳练习I由铜、铁、铝、金、银能导电,能归纳出什么结论II由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论III观察等式,能得出怎样的结论222134,1359,13579164讨论I统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理II归纳推理有何作用(发现新事实,获得新结论,是做出科学发现的重要手段)III归纳推理的结果是否正确(不一定)2教学例题出示例题已知数列的第1项,且,试归纳出通项公式NA2A11,2NNA(分析思路试值N1,2,3,4猜想如何证明将递推公式变形,再构造新数列)思考证得某命题在NN时成立;又假设在NK时命题成立,再证明NK1时命题也成立由0不健康健康总计不优秀41626667优秀37296333总计789221000这两步,可以归纳出什么结论(目的渗透数学归纳法原理,即基础、递推关系)练习已知,推测的表达式10,1,FAFNBF2,0NABFN3小结归纳推理的药店由部分到整体、由个别到一般;典型例子哥德巴赫猜想的提出;数列通项公式的归纳三、巩固练习1练习教材P381、2题2作业教材P44习题A组1、2、3题第二课时211合情推理(二)教学要求结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学重点了解合情推理的含义,能利用归纳和类比等进行简单的推理教学难点用归纳和类比进行推理,作出猜想教学过程一、复习准备1练习已知,考察下列式子;01,2IAN1IA12124IA我们可以归纳出,对也成立的类似不等式为1231239IA12,N2猜想数列的通项公式是,573导入鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测火星上有生命存在以上都是类比思维,即类比推理二、讲授新课1教学概念概念由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理简言之,类比推理是由特殊到特殊的推理类比练习I圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径由此结论如何类比到球体II平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论III由圆的一些特征,类比得到球体的相应特征(教材P81探究填表)小结平面空间,圆球,线面讨论以平面向量为基础学习空间向量,试举例其中的一些类比思维2教学例题出示例1类比实数的加法和乘法,列出它们相似的运算性质(得到如下表格)类比角度实数的加法实数的乘法运算结果若则,ABR若则,ABR运算律CC逆运算加法的逆运算是减法,使得方程有唯一解0AX乘法的逆运算是除法,使得方程有唯一解1AX单位元出示例2类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想思维直角三角形中,3条边的长度,2条直角边和1条斜边;09C,ABC,ABC3个面两两垂直的四面体中,4个面的面积和09PDFEF23,S3个“直角面”和1个“斜面”拓展三角形到四面体的类比123,SS3小结归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理三、巩固练习1练习教材P383题2探究教材P35例53作业P445、6题第三课时212演绎推理教学要求结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。教学重点了解演绎推理的含义,能利用“三段论”进行简单的推理教学难点分析证明过程中包含的“三段论”形式教学过程一、复习准备1练习对于任意正整数N,猜想(2N1)与N12的大小关系在平面内,若,则类比到空间,你会得到什么结论(结论在空间中,若,ACB/AB,则;或在空间中,若,ACB/,/则2讨论以上推理属于什么推理,结论正确吗合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢3导入所有的金属都能够导电,铜是金属,所以;太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;奇数都不能被2整除,2007是奇数,所以(填空讨论上述例子的推理形式与我们学过的合情推理一样吗课题演绎推理)二、讲授新课1教学概念概念从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。要点由一般到特殊的推理。讨论演绎推理与合情推理有什么区别合情推理;演绎推理由一般到特殊归纳推理由特殊到一般类比推理由特殊到特殊提问观察教材P39引例,它们都由几部分组成,各部分有什么特点所有的金属都导电铜是金属铜能导电已知的一般原理特殊情况根据原理,对特殊情况做出的判断大前提小前提结论“三段论”是演绎推理的一般模式第一段大前提已知的一般原理;第二段小前提所研究的特殊情况;第三段结论根据一般原理,对特殊情况做出的判断举例举出一些用“三段论”推理的例子2教学例题出示例1证明函数在上是增函数2FXX,1板演证明方法(定义法、导数法)指出大前题、小前题、结论出示例2在锐角三角形ABC中,D,E是垂足求证AB的中点M到D,E,ABCA的距离相等分析证明思路板演证明过程指出大前题、小前题、结论讨论因为指数函数是增函数,是指数函数,则结论是什么XYA12XY(结论指出大前提、小前提讨论结论是否正确,为什么)讨论演绎推理怎样才结论正确(只要前提和推理形式正确,结论必定正确)3比较合情推理与演绎推理的区别与联系(从推理形式、结论正确性等角度比较;演绎推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路)三、巩固练习1练习P422、3题2探究P42阅读与思考3作业P446题,B组1题第一课时221综合法和分析法(一)教学要求结合已经学过的数学实例,了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程、特点教学重点会用综合法证明问题;了解综合法的思考过程教学难点根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法教学过程一、复习准备1已知“若,且,则”,试请此结论推广猜想12,AR12A124A(答案若,且,则),NN121NAA22已知,求证,ABC1ABC9ABC先完成证明讨论证明过程有什么特点二、讲授新课1教学例题出示例1已知A,B,C是不全相等的正数,求证AB2C2BC2A2CA2B26ABC分析运用什么知识来解决(基本不等式)板演证明过程(注意等号的处理)讨论证明形式的特点提出综合法利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立框图表示要点顺推证法;由因导果练习已知A,B,C是全不相等的正实数,求证3BCABAC出示例2在ABC中,三个内角A、B、C的对边分别为A、B、C,且A、B、C成等差数列,A、B、C成等比数列求证为ABC等边三角形分析从哪些已知,可以得到什么结论如何转化三角形中边角关系板演证明过程讨论证明过程的特点小结文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2练习为锐角,且,求证(提示算),ABTANT3TAN3ABA60ABTANAB已知求证,ABC14BC3小结综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q运用综合法可12,Q以解决不等式、数列、三角、几何、数论等相关证明问题三、巩固练习1求证对于任意角,(教材P52练习1题)44COSINCOS2(两人板演订正小结运用三角公式进行三角变换、思维过程)2的三个内角成等差数列,求证ABC,ABC13ABCAB3作业教材P54A组1题第二课时221综合法和分析法(二)教学要求结合已经学过的数学实例,了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程、特点教学重点会用分析法证明问题;了解分析法的思考过程教学难点根据问题的特点,选择适当的证明方法教学过程一、复习准备1提问基本不等式的形式2讨论如何证明基本不等式0,2ABAB(讨论板演分析思维特点从结论出发,一步步探求结论成立的充分条件)二、讲授新课1教学例题出示例1求证3526讨论能用综合法证明吗如何从结论出发,寻找结论成立的充分条件板演证明过程(注意格式)再讨论能用综合法证明吗比较两种证法提出分析法从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止框图表示要点逆推证法;执果索因练习设X0,Y0,证明不等式1123XYXY先讨论方法分别运用分析法、综合法证明出示例4见教材P48讨论如何寻找证明思路(从结论出发,逐步反推)出示例5见教材P49讨论如何寻找证明思路(从结论与已知出发,逐步探求)2练习证明通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大提示设截面周长为L,则周长为L的圆的半径为,截面积为,周长为L的正方形边长2L2L为,截面积为,问题只需证4L24243小结分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知,直到所有的已知P12,P都成立;比较好的证法是用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”分析,从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径(框图示意)三、巩固练习1设A,B,C是的ABC三边,S是三角形的面积,求证2243CABS略证正弦、余弦定理代入得,2COS43SINABCC即证,即,即证(成立)2OS3INC3INI162作业教材P52练习2、3题第三课时222反证法教学要求结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点教学重点会用反证法证明问题;了解反证法的思考过程教学难点根据问题的特点,选择适当的证明方法教学过程一、复习准备1讨论三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗(原因偶次)2提出问题平面几何中,我们知道这样一个命题“过在同一直线上的三点A、B、C不能作圆”讨论如何证明这个命题3给出证法先假设可以作一个O过A、B、C三点,则O在AB的中垂线L上,O又在BC的中垂线M上,即O是L与M的交点。但A、B、C共线,LM矛盾过在同一直线上的三点A、B、C不能作圆二、讲授新课1教学反证法概念及步骤练习仿照以上方法,证明如果AB0,那么BAOABCDP提出反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立证明基本步骤假设原命题的结论不成立从假设出发,经推理论证得到矛盾矛盾的原因是假设不成立,从而原命题的结论成立应用关键在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等)方法实质反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实注结合准备题分析以上知识2教学例题出示例1求证圆的两条不是直径的相交弦不能互相平分分析如何否定结论如何从假设出发进行推理得到怎样的矛盾与教材不同的证法反设AB、CD被P平分,P不是圆心,连结OP,则由垂径定理OPAB,OPCD,则过P有两条直线与OP垂直(矛盾),不被P平分出示例2求证是无理数(同上分析板演证明,提示有理数可表示为)3/MN证假设是有理数,则不妨设(M,N为互质正整数),3/从而,可见M是3的倍数2/MN2N设M3P(P是正整数),则,可见N也是3的倍数29P这样,M,N就不是互质的正整数(矛盾)不可能,是无理数/练习如果为无理数,求证是无理数1AA提示假设为有理数,则可表示为(为整数),即/Q,/APQ由,则也是有理数,这与已知矛盾是无理数/PQ3小结反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)三、巩固练习1练习教材P541、2题2作业教材P54A组3题第三章数系的扩充与复数的引入第一课时311数系的扩充与复数的概念教学要求理解数系的扩充是与生活密切相关的,明白复数及其相关概念。教学重点复数及其相关概念,能区分虚数与纯虚数,明白各数系的关系。教学难点复数及其相关概念的理解教学过程一、复习准备1提问N、Z、Q、R分别代表什么它们的如何发展得来的(让学生感受数系的发展与生活是密切相关的)2判断下列方程在实数集中的解的个数(引导学生回顾根的个数与的关系)(1)(2)(3)(4)340X450X210X210X3人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。讨论若给方程一个解,则这个解要满足什么条件是否在实数集中1XIII实数与相乘、相加的结果应如何AI二、讲授新课1教学复数的概念定义复数形如的数叫做复数,通常记为(复数的代数形式),其中叫虚数单位,BIZABII叫实部,叫虚部,数集叫做复数集。|,CABIR出示例1下列数是否是复数,试找出它们各自的实部和虚部。23,84,629,70II规定,强调两复数不能比较大小,只有等与不等。ABCDC且D讨论复数的代数形式中规定,取何值时,它为实数数集与实数集有何关系,AB,定义虚数叫做虚数,叫做纯虚数。,0II数集的关系0,ZA实数复数一般虚数B虚数纯虚数上述例1中,根据定义判断哪些是实数、虚数、纯虚数2出示例题26P(引导学生根据实数、虚数、纯虚数的定义去分析讨论)练习已知复数与相等,且的实部、虚部分别是方程的两根,试求ABI34KIABI2430X的值。(讨论中,K取何值时是实数),K小结复数、虚数、纯虚数的概念及它们之间的关系及两复数相等的充要条件。三、巩固练习1指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。23,840,6291,70IIII2判断两复数,若虚部都是3,则实部大的那个复数较大。复平面内,所有纯虚数都落在虚轴上,所有虚轴上的点都是纯虚数。3若,则的值是517XYII,XY4已知是虚数单位,复数,当取何实数时,是I2342ZMIIIMZ(1)实数(2)虚数(3)纯虚数(4)零作业2、3题。6P第二课时312复数的几何意义教学要求理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。教学重点理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。教学难点根据复数的代数形式描出其对应的点及向量。教学过程一、复习准备1说出下列复数的实部和虚部,哪些是实数,哪些是虚数。14,7283,620,73,IIII2复数,当取何值时为实数、虚数、纯虚数ZXYXY3若,试求的值,(呢)I,432XYI二、讲授新课1复数的几何意义讨论实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢(分析复数的代数形式,因为它是由实部和虚部同时确定,即有顺序的两实数,不难想到有序实数A对或点的坐标)结论复数与平面内的点或序实数一一对应。复平面以轴为实轴,轴为虚轴建立直角坐标系,得到的平面叫复平面。XY复数与复平面内的点一一对应。例1在复平面内描出复数分别对应的点。14,7283,620,73,IIII(先建立直角坐标系,标注点时注意纵坐标是而不是)B观察例1中我们所描出的点,从中我们可以得出什么结论实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。思考我们所学过的知识当中,与平面内的点一一对应的东西还有哪些,ZABI一一对应复数复平面内的点,ZABI一一对应复数平面向量O一一对应复平面内的点平面向量注意人们常将复数说成点或向量,规定相等的向量表示同一复数。ZABI2应用例2,在我们刚才例1中,分别画出各复数所对应的向量。练习在复平面内画出所对应的向量。23,413,40III小结复数与复平面内的点及平面向量一一对应,复数的几何意义。三、巩固与提高1分别写出下列各复数所对应的点的坐标。23,840,6291,70IIII3若复数表示的点在虚轴上,求实数的取值。2356ZMMA变式若表示的点在复平面的左(右)半平面,试求实数的取值。Z3、作业课本64题2、3题第一课时321复数的代数形式的加减运算教学要求掌握复数的代数形式的加、减运算及其几何意义。教学重点复数的代数形式的加、减运算及其几何意义教学难点加、减运算的几何意义教学过程一、复习准备1与复数一一对应的有2试判断下列复数在复平面中落在哪象限并画出其对应的向量。14,726,0,73IIII3同时用坐标和几何形式表示复数所对应的向量,并计算。向量的加减1247ZIZI与12OZ运算满足何种法则4类比向量坐标形式的加减运算,复数的加减运算如何二、讲授新课1复数的加法运算及几何意义复数的加法法则,则。12ZABIZCDI与12ZACBDI例1计算(1)(2)(3)47I74I2435I(4)3235II观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证。例2例1中的(1)、(3)两小题,分别标出,所对应的向量,再1,II,II画出求和后所对应的向量,看有所发现。复数加法的几何意义复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则)2复数的减法及几何意义类比实数,规定复数的减法运算是加法运算的逆运算,即若,则12Z。Z叫做21减去的差,21Z记作讨论若,试确定是否是一个确定的值1,ABCDI(引导学生用待定系数法,结合复数的加法运算进行推导,师生一起板演)复数的加法法则及几何意义,复数的减法运算也可以按向量的减ABCDIACBDI法来进行。例3计算(1)(2)(3)147II5142I2435III练习已知复数,试画出,Z3Z2小结两复数相加减,结果是实部、虚部分别相加减,复数的加减运算都可以按照向量的加减法进行。三、巩固练习1计算(1)(2)(3)845I4I292III2若,求实数的取值。3019YX,XY变式若表示的点在复平面的左(右)半平面,试求实数的取值。IIA3三个复数,其中,是纯虚数,若这三个复数所对应的向量能构成等边三角形,123,Z13ZI2试确定的值。作业课本71页1、2题。第二课时322复数的代数形式的乘除运算教学要求掌握复数的代数形式的乘、除运算。教学重点复数的代数形式的乘除运算及共轭复数的概念教学难点乘除运算教学过程一、复习准备1复数的加减法的几何意义是什么2计算(1)(2)(3)47II5142III2435III3计算(1)(2)(类比多项式的乘法引入复数的乘法)13ABCD二、讲授新课1复数代数形式的乘法运算复数的乘法法则。2ABICDIIABDCI例1计算(1)(2)(3)1477142435II(4)32435III探究观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律例21、计算(1)(2)(3)1II147214III2I2、已知复数,若,试求的值。变若,试求的值。Z8Z共轭复数两复数叫做互为共轭复数,当时,它们叫做共轭虚数。ABII与0B注两复数互为共轭复数,则它们的乘积为实数。练习说出下列复数的共轭复数。32,4,52,7III类比,试写出复数的除法法则。1232复数的除法法则22ABIICDABCADABICDII其中叫做实数化因子CDI例3计算,(师生共同板演一道,再学生练习)23I123II练习计算,21I2I2小结两复数的乘除法,共轭复数,共轭虚数。三、巩固练习1计算(1)(2)(3)31I2345II321I2若,且为纯虚数,求实数的取值。变在复平面的下方,求。12,4ZAIZI12ZA2ZA第四章框图41流程图教学目的1能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用,并能通过框图理解某件事情的处理过程2在使用流程图过程中,发展学生条理性思考与表达能力和逻辑思维能力教学重点识流程图教学难点数学建模教学过程例1按照下面的流程图操作,将得到怎样的数集开始写下1加3写下结果你已写下10个数了吗结束对这个刚写下的数加上一个比前面加过的那个数大2的数NY解按照上述流程图操作,可以得到下面的10个数1,134,4(32)459,9529716,167216925,2592251136,36112361349,49132491564,64152641781,811728119100这样,可以得到数集1,4,9,16,25,36,49,64,81,100我们知道用数学知识和方法解决实际问题的过程就是数学建模的过程,数学建模的过程可以用下图所示的流程图来表示实际情景提出问题数学建模数学结果检验可用结果合乎实际不合乎实际修改以”哥尼斯堡七桥问题”为例来体会数学建模的过程1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 故事叙述在商业演讲中的应用
- 教育培训中的创新设计
- 教育数字平台的构建与应用
- 病毒-细菌共感染特征-洞察及研究
- 信息化背景下高校师生党员、干部培训的新途径
- 红巨星暗物质伴星研究-洞察阐释
- 提升基础教育质量推动资源均衡化
- 幼儿园环境装修与安全标准解读
- 建筑工程施工质量控制的要点
- 2025年中国海风藤市场调查研究报告
- 矿井调度员考试题及答案
- 2025至2030中国控制按钮开关行业产业运行态势及投资规划深度研究报告
- 临商银行股份有限公司招聘笔试真题2024
- 2025广东高考物理试题(大题部分)+评析
- DB31-T 1593-2025 基于自动驾驶功能的公交运营技术要求
- 医院纯水系统管理制度
- 2025年广西文化和旅游厅所属事业单位招聘考试备考题库
- 2024届清华大学强基计划数学学科笔试试题(附答案)
- GB/T 9126.1-2023管法兰用非金属平垫片第1部分:PN系列
- 早产儿出院后喂养(课堂PPT)
- 英语的起源与发展(课堂PPT)
评论
0/150
提交评论