




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofMaterialsProcessingTechnologyxxx(2005)xxxxxxAbstractoperations.metal-cuttingforfeed-rateconductedK1.theofaremeragearederEvanthemachiningnecessarysatisfytioperatingAtainconditions.de0924-0136/$doi:10.1016/j.jmatprotec.2005.02.143Fuzzycontrolstrategyforanadaptiveforcecontrolinend-millingU.Zuperl,F.Cus,M.MilfelnerFacultyofMechanicalEngineering,UniversityofMaribor,Smetanova17,2000Maribor,SloveniaThispaperdiscussestheapplicationoffuzzyadaptivecontrolstrategytotheproblemofcuttingforcecontrolinhighspeedend-millingTheresearchisconcernedwithintegratingadaptivecontrolwithastandardcomputernumericalcontroller(CNC)foroptimisingaprocess.Itisdesignedtoadaptivelymaximisethefeed-ratesubjecttoallowablecuttingforceonthetool,whichisverybeneficialatimeconsumingcomplexshapemachining.Thepurposeistopresentareliable,robustneuralcontrolleraimedatadaptivelyadjustingtopreventexcessivetoolwear,toolbreakageandmaintainahighchipremovalrate.Numeroussimulationsandexperimentsaretoconfirmtheefficiencyofthisarchitecture.2005ElsevierB.V.Allrightsreserved.eywords:End-milling;Adaptiveforcecontrol;FuzzyIntroductionAremainingdrawbackofmodernCNCsystemsisthatmachiningparameters,suchasfeed-rate,speedanddepthcut,areprogrammedoff-line.Themachiningparameterssimulationswiththefuzzycontrolstrategyarecarriedout.Theresultsdemonstratetheabilityoftheproposedsystemtoeffectivelyregulatepeakforcesforcuttingconditionscom-monlyencounteredinend-millingoperations.Forcecontrolalgorithmshavebeendevelopedandeval-usuallyselectedbeforemachiningaccordingtoprogram-sexperienceandmachininghandbooks.Topreventdam-andtoavoidmachiningfailuretheoperatingconditionsusuallysetextremelyconservative.Asaresult,manyCNCsystemsareinefficientandrunun-theoperatingconditionsthatarefarfromoptimalcriteria.enifthemachiningparametersareoptimisedoff-linebyoptimisationalgorithm5theycannotbeadjustedduringmachiningprocess.Toensurethequalityofmachiningproducts,toreducethecostsandincreasethemachiningefficiency,itistoadjustthemachiningparametersinreal-time,totheoptimalmachiningcriteria.Forthisreason,adap-vecontrol(AC),whichprovideson-lineadjustmentoftheconditions,isbeingstudiedwithinterest3.InourCsystem,thefeed-rateisadjustedon-lineinordertomain-aconstantcuttingforceinspiteofvariationsincuttingInthispaper,asimplefuzzycontrolstrategyisvelopedintheintelligentsystemandsomeexperimentalCorrespondingauthor.Tel.:+38622207623;fax:+38622207990.E-mailaddress:uros.zuperluni-mb.si(U.Zuperl).uatedisnallyantrollerditions.trollerandatedallthetems,bysentedtesystems3controlhasmotion.forseefrontmatter2005ElsevierB.V.Allrightsreserved.bynumerousresearchers.Amongthemostcommonthefixedgainproportionalintegral(PI)controllerorigi-proposedformillingby4.Kimetal.4proposedadjustablegainPIcontrollerwherethegainofthecon-isadjustedinresponsetovariationsincuttingcon-Thepurelyadaptivemodelreferenceadaptivecon-(MRAC)approachwasoriginallyinvestigatedbyCusBalic2.Thesecontrollersweresimulatedandevalu-andphysicallyimplementedby1.Bothstudiesfoundthree-parameteradaptivecontrollertoperformbetterthanfixedgainPIcontroller.Asregardsfuzzycontrolsys-anintroductorysurveyofpioneeringactivitiesisgivenHuangandLin3,andamoresystematicviewispre-byin4.Comparisonsoffuzzywithproportionalin-gralderivative(PID)controlandstabilityanalysisoffuzzyandsupervisoryfuzzycontrolareaddressedinRef.Muchworkhasbeendoneontheadaptivecuttingforceformilling2.However,mostofthepreviousworksimplifiedtheproblemofmillingintoone-dimensionalInthiscontribution,wewillconsiderforcecontrolthree-dimensionalmilling.2Processingscribesthesimulation/eposedimentalresearch.2.fuzzyseteThewhichplementcontrolmoreTherateasthecomparedcontrolFuzzyratecuttingcreasesrates,productionarebreakage.callytheforbelo.signingonactualcentagemisationalcorrectcontrolleraplepro2.1.aaboutinputoperatorthroughU.Zuperletal./JournalofMaterialsThepaperisorganisedasfollows.Section2brieflyde-theoverallforcecontrolstrategy.Section3coversCNCmachiningprocessmodel.Section5describesthexperimentsandimplementationmethodofpro-controlscheme.Finally,Sections6and7presentexper-results,conclusions,andrecommendationsforfutureAdaptivefuzzycontrollerstructureAnewon-linecontrolschemewhichiscalledadaptivecontrol(AFC)(Fig.1)isdevelopedbyusingthefuzzytheory.Thebasicideaofthisapproachistoincorporatethexperienceofahumanoperatorindesignofthecontroller.controlstrategiesareformulatedasanumberofrulesaresimpletocarryoutmanuallybutdifficulttoim-byusingconventionalalgorithm.Basedonthisnewstrategy,verycomplicatedprocesscanbecontrolledeasilyandaccuratelycomparedtostandardapproaches.objectiveoffuzzycontroliskeepingthemetalremoval(MRR)ashighaspossibleandmaintainingcuttingforcecloseaspossibletoagivenreferencevalue.Furthermore,amountofcomputationtaskandtimecanbereducedastoclassicalormoderncontroltheory.Schematicrulesareconstructedbyusingrealexperimentaldata.adaptivecontrolensurescontinuousoptimisingfeedcontrolthatisautomaticallyadjustedtoeachparticularsituation.Whenspindleloadsarelow,thesystemin-cuttingfeedsaboveandbeyondpre-programmedfeedresultinginconsiderablereductionsincycletimesandcosts.Whenspindleloadsarehighthefeedrateslowered,safeguardingmachinetoolsfromdamagefromWhensystemdetectsextremeforces,itautomati-stopsthemachinetoprotectthecuttingtool.Itreducesneedforconstantoperatorsupervision.Sequenceofstepson-lineoptimisationofthemillingprocessarepresentedw.namicstheasvofcuttinglated,Delta1forceFig.1.ComparisonofactualTechnologyxxx(2005)xxxxxxThepre-programmedfeedratesaresenttoCNCcontrollerofthemillingmachine.Themeasuredcuttingforcesaresenttothefuzzycon-troller.Fuzzycontrollerusestheenteredrulestofind(adjust)theoptimalfeed-ratesandsendsitbacktothemachine.Steps1and3arerepeateduntilterminationofmachining.Theadaptiveforcecontrolleradjuststhefeed-ratebyas-afeed-rateoverridepercentagetotheCNCcontrollerafour-axisHeller,basedonameasuredpeakforce.Thefeed-rateistheproductofthefeed-rateoverrideper-andtheprogrammedfeed-rate.Ifthefeed-rateopti-modelswereperfect,theoptimisedfeed-ratewouldwaysbeequaltothereferencepeakforce.Inthiscasetheoverridepercentagewouldbe100%.Inorderforthetoregulatepeakforce,forceinformationmustbevailabletothecontrolalgorithmateverycontrollersam-time.Adataacquisitionsoftware(Labview)isusedtovidethisinformation.StructureofafuzzycontrollerInfuzzyprocesscontrol,expertiseisencapsulatedintosystemintermsoflinguisticdescriptionsofknowledgehumanoperatingcriteria,andknowledgeabouttheoutputrelationships.Thealgorithmisbasedonthesknowledge,butitalsoincludescontroltheory,theerrorderivative,takingintoconsiderationthedy-oftheprocess.Thus,thecontrollerhasasitsinputs,cuttingforceerrorDelta1FanditsfirstdifferenceDelta12F,andoutputs,thevariationinfeedrateDelta1f.Thefuzzycontrolariablesfuzzification(seeFig.2)aswellasthecreationtherulesbaseweretakenfromtheexpertoperator.Theforceerrorandfirstdifferenceoftheerrorarecalcu-ateachsamplinginstantk,as:Delta1F(k)=FrefF(k)and2F(k)=Delta1F(k)Delta1F(k1),whereFismeasuredcuttingandFrefisforcesetpoint.andmodelfeed-rate.3.etalandforcesscribedmachinefeedingfitquencefromformcommandedtingmodel.mentalfeed-rateU.Zuperletal./JournalofMaterialsProcessingFig.2.StructureofafuzzyCNCmachiningprocessmodelACNCmachiningprocessmodelsimulatorisusedtovaluatethecontrollerdesignbeforeconductingexperimen-tests.Theprocessmodelconsistsofaneuralforcemodelfeeddrivemodel.Theneuralmodelestimatescuttingbasedoncuttingconditionsandcutgeometryasde-byZuperl1.Thefeeddrivemodelsimulatestheresponsetochangesincommandedfeed-rate.Thedrivemodelwasdeterminedexperimentallybyexamin-stepchangesinthecommandedvelocity.Thebestmodelwasfoundtobeasecond-ordersystemwithanaturalfre-yof3Hzandasettlingtimeof0.4s.Comparisonofxperimentalandsimulationresultsofavelocitystepchange7to22mm/sisshownonFig.3.ThefeeddriveandneuralforcemodelarecombinedtotheCNCmachiningprocessmodel.Modelinputisthefeed-rateandtheoutputistheX,Yresultantcut-force.ThecutgeometryisdefinedintheneuralforceThesimulatorisverifiedbycomparisonofexperi-andmodelsimulationresults.Avarietyofcutswithchangesweremadeforvalidation.changeFig.resultsTechnologyxxx(2005)xxxxxx3controller.Theexperimentalandsimulationresultantforceforastepinfeed-ratefrom0.05to2mm/toothispresentedin4.Theexperimentalresultscorrelatewellwithmodelintermsofaverageandpeakforce.TheexperimentalFig.3.Comparisonofactualandmodelfederate.4resultsandthe3.1.dardlarimentsforceusedfederatedialforcesaryU.Zuperletal./JournalofMaterialsProcessingFig.4.Structureofafuzzycorrelatewellwithmodelresultsintermsofaveragepeakforce.Theobviousdiscrepancymaybeduetoinaccuraciesinneuralmodel,andunmodeledsystemdynamics.CuttingforcemodelingTorealisetheon-linemodellingofcuttingforces,astan-BPneuralnetwork(NN)isproposedbasedonthepopu-backpropagationleeringrule.Duringpreliminaryexper-itprovedtobesufficientlycapableofextractingthemodeldirectlyfromexperimentalmachiningdata.Itistosimulatethecuttingproc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保安员考试题库含完整答案名师系列
- 2025年小学生科学知识竞赛题库及答案
- 2025-2030基因治疗临床试验进展与产业化瓶颈分析
- 2025-2030基因检测技术临床转化与商业模式验证分析报告
- 2025-2030基于类器官技术的儿童脑疾病模型构建与药物筛选平台投资价值
- 2025-2030基于数字补偿技术的智能振荡器发展现状报告
- 2025-2030基于区块链的分布式储能交易管理平台架构设计与试点分析
- 2025-2030啤酒行业人才缺口现状分析及产学研联合培养机制设计
- 2025-2030啤酒文化IP打造对鲜啤品牌溢价能力的影响及实施路径探析
- 2025-2030啤酒包装回收体系试点效果分析及循环经济模式推广建议
- 北京市大兴区2024-2025学年高二上学期期中检测数学试题(解析版)
- 汇川PLC培训课件
- 中建二测考试真题及答案
- 抗美援朝课件图文
- 矿业权评估全参数确定指导意见
- 2025-2030散装白酒行业市场深度分析及发展策略研究报告
- 脾切除术围手术期护理
- 2025贵州民航产业集团有限公司招聘120人考试参考试题及答案解析
- XJJ 077-2017 高性能混凝土应用技术规程
- 智能零售门店智能照明系统维护方案
- 员工股权激励分红协议
评论
0/150
提交评论