超声波测距系统_毕业论文(毕业设计说明书)_第1页
超声波测距系统_毕业论文(毕业设计说明书)_第2页
超声波测距系统_毕业论文(毕业设计说明书)_第3页
超声波测距系统_毕业论文(毕业设计说明书)_第4页
超声波测距系统_毕业论文(毕业设计说明书)_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超声波测距系统的设计与实现1概述从技术上看,超声波测距系统在上个世纪70年代已经实用化,从70年代末期开始广泛应用于生产领域。于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在工农业生产上到了广泛的应用。2课题研究背景与意义21课题研究背景超声波是指频率在20KHZ以上的声波,它属于机械波的范畴。近年来,随着电子测量技术的发展,运用超声波作出精确测量已成可能。随着经济发展,电子测量技术应用越来越广泛,而超声波测量精确高,成本低,性能稳定则备受青睐。超声波是指频率在20KHZ以上的声波,它属于机械波的范畴。超声波也遵循一般机械波在弹性介质中的传播规律,如在介质的分界面处发生反射和折射现象,在进入介质后被介质吸收而发生衰减等。正是因为具有这些性质,使得超声波可以用于距离的测量中。随着科技水平的不断提高,超声波测距技术被广泛应用于人们日常工作和生活之中。一般的超声波测距仪可用于固定物位或液位的测量,适用于建筑物内部、液位高度的测量等。22课题研究意义由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,较其它仪器更卫生,更耐潮湿、粉尘、高温、腐蚀气体等恶劣环境,具有少维护、不污染、高可靠、长寿命等特点。因此可广泛应用于纸业、矿业、电厂、化工业、水处理厂、污水处理厂、农业用水、环保检测、食品(酒业、饮料业、添加剂、食用油、奶制品)、防汛、水文、明渠、空间定位、公路限高等行业中。可在不同环境中进行距离准确度在线标定,可直接用于水、酒、糖、饮料等液位控制,可进行差值设定,直接显示各种液位罐的液位、料位高度。因此,超声在空气中测距在特殊环境下有较广泛的应用。利用超声波检测往往比较迅速、方便、计算简单、易于实现实时控制,并且在测量精度方面能达到工业实用的指标要求,因此为了使移动机器人能够自动躲避障碍物行走,就必须装备测距系统,以使其及时获取距障碍物的位置信息(距离和方向)。因此超声波测距在移动机器人的研究上得到了广泛的应用。同时由于超声波测距系统具有以上的这些优点,因此在汽车倒车雷达的研制方面也得到了广泛的应用。3方案设计和选择根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。31超声波测距的基本原理谐振频率高于20KHZ的声波被称为超声波。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。利用超声波的这种性能就可制成超声传感器,或称为超声换能器,它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能,向外发送超声波;反之,当换能器处在接收状态时,它可将声能机械能转换为电能。311超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。312压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。313超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340M/S,根据计时器记录的时间T,就可以计算出发射点距障碍物的距离S,即S340T/2最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340M/S,根据计时器记录的时间T,就可以计算出发射点距障碍物面的距离S,即S340T/2。由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。如图31所示TA超声波发射障碍物SH超声波接收图31超声波的测距原理COSSH(31)LARTG(32)式中L两探头之间中心距离的一半又知道超声波传播的距离为VTS233式中V超声波在介质中的传播速度T超声波从发射到接收所需要的时间将(32)、(33)代入(31)中得COS21HLARTGVT34其中,超声波的传播速度V在一定的温度下是一个常数例如在温度T30度时,V349M/S当需要测量的距离H远远大于L时,则34变为T2135所以,只要需要测量出超声波传播的时间T,就可以得出测量的距离H32单片机AT89S52单片机一词最初源于“SINGLECHIPMICROCOMPUTER”,简称“SCM”。单片机也叫做“微控制器”或者“嵌入式微控制器”。它不是完成某一个逻辑功能的芯片(芯片也称为集成电路块,它是1958年9月12日,在ROBERTNOYCE的领导下,科研小组发明集成电路后开始出现的一个名称),而是把一个微型计算机系统集成到一个芯片上。概括的讲一块芯片就成了一台计算机。它体积小、质量轻、价格便宜,为学习、应用和开发提供了便利条件。近年来,微处理器已广泛应用于多种领域,尤其是在智能仪器仪表中的应用更是如此,这不仅引起了产品本身的变革,也深深地影响设计的理念的变革。智能仪器仪表作为一种智能系统,其核心在于微处理器。基于微处理器的智能系统设计,已成为目前电子设计领域的一个热点。智能系统是一个复杂的系统,一般包含微处理器、按键与显示人机界面、A/D转换、D/A转换等基本功能部件,同时也包含与应用领域相关的其他特殊部件。智能系统一般需要在恶劣的环境下长期连续地工作,因此在满足功能的基础上,其可靠性也是设计时需要考虑的一个方面,目前已经普遍应用于通信、雷达、遥控和自动控制等各个领域中。在本次毕业设计中我选用的是AT89S52单片机。AT89S52是一个低功耗,高性能CMOS8位单片机,片内含8KBYTESISPINSYSTEMPROGRAMMABLE的可反复擦写1000次的FLASH只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISPFLASH存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。321一般说明AT89S52具有如下特点40个引脚,8KBYTESFLASH片内程序存储器,256BYTES的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。AT89S52的数据存储包括256字节的内部RAM,特殊功能寄存器(SFR),2K字节的片内EEPROM和可扩展至64K的外部数据存储器。此外,AT89S52设计和配置了振荡频率可为0HZ并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。322极限参数表31AT89S52极限参数参数额定值单位操作温度070或4085C储存温度范围65150CEA/VPP脚相对于VSS的电压0130V其他任何脚相对于VSS的电压0565V每个IO脚的最大IOL15MA33超声波传感器331超声波的特性声音是与人类生活紧密相关的一种自然现象。当声的频率高到超过人耳听觉的频率极限根据大量实验数据统计,取整数为20000赫兹时,人们就会觉察不出周围声的存在,因而称这种高频率的声为“超”声。人的听觉范围如图25所示。图35人的听觉范围超声波的特性有(1)束射特性由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射,也能聚焦,而且遵守几何光学上的所有定律。即超声波射线从一种物质表面反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射现象,也就是要改变它的传播方向,两种物质的密度差别愈大,则折射率也愈大。(2)吸收特性声波在各种介质中传播时,随着传播距离的增加,其强度会逐渐减弱,这是因为介质要吸收掉它的部分能量。对于同一介质,声波的频率越高,介质吸收就越强。对于一个频率一定的声波,在气体中传播时吸收尤为历害,在液体中传播时吸收就比较弱,在固体中传播时吸收是最小的。(3)超声波的能量传递特性超声波之所以能在各个工业部门中得到广泛的应用,主要原因还在于比声波具有强大得多的功率。为什么有这么强大的功率呢因为当声波进入某一介质中时,由于声波的作用使物质中的分子也随之振动,振动的频率和声波频率样,分子振动的频率决定了分子振动的速度。频率愈高速度愈大。物资分子由于振动所获得的能量除了与分子本身的质量有关外,主要是由分子的振动速度的平方决定的,所以如果声波的频率愈高,也就是物质分子愈能得到更高的能量。超声波的频率比普通声波要高出很多,所以它可以使物质分子获得很大的能量;换句话来说,超声波本身就可以供给物质分子足够大的功率。(4)超声波的声压特性当声波进入某物体时,由于声波振动使物质分子相互之间产生压缩和稀疏的作用,将使物质所受的压力产生变化。由于声波振动引起附加压力现象叫声压作用。332超声波换能器完成产生超声波和接收超声波这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声波探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多用作探测方面。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。由于晶片的大小,如直径和厚度也各不相同,因此每个探头的性能都是不同的,我们使用前必须预先了解清楚该探头的性能参数。超声波传感器的主要性能指标包括(1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。(2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。(3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高。人类能听到的声音频率范围为20HZ20KHZ,即为可听声波,超出此频率范围的声音,即20HZ以下频率的声音称为低频声波,20KHZ以上频率的声音称为超声波。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。为此,利用超声波的这种性能就可制成超声波传感器。另外,超声波在空气中的传播速度较慢,为340MS,这就使得超声波传感器使用变得非常简便。我们选用压电式超声波传感器。它的探头常用材料是压电晶体和压电陶瓷,是利用压电材料的压电效应来进行工作的。逆压电效应将高频电振动转换成高频机械振动,从而产生超声波,可作为发射探头;而利用正压电效应,将超声振动波转换成电信号,可作为接收探头。为了研究和利用超声波,人们已经设计和制成了许多种超声波发生器。总体上讲,超声波发生器大体可以分为两大类一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。共振板GON电极电极图36超声波传感器结构压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,压电晶片便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。如图44所示。34CAD简介CAD在早期是英文COMPUTERAIDEDDRAFTING计算机辅助绘图的缩写,随着计算机软、硬件技术的发展,人们逐步的认识到单纯使用计算机绘图还不能称之为计算机辅助设计;真正的设计是整个产品的设计,它包括产品的构思、功能设计、结构分析、加工制造等。二维工程图设计只是产品设计中的一小部分;于是CAD的缩写也由COMPUTERAIDEDDRAFTING改为COMPUTERAIDEDDESIGN(计算机辅助设计),CAD也不再仅仅是辅助绘图,而是整个产品的辅助设计。早在20世纪70年代军工部门就是利用计算机来完成飞机,火箭等航空,航天器的设计工作。电子线路CAD的基本含义是使用计算机来完成电子线路的设计过程,包含电路原理图的编辑,电路功能的仿真,工作环境的模拟,印制板的设计(自动布局,自动布线)与检测等等。电子线路CAD软件还能迅速形成各种各样的报表文件,如元件清单报表,为元器件的采购及工程欲算等提供了方便,便于新型电子器件和集成电路的应用。随着电子技术的飞速用日趋广泛,电子电路也变得越来越复杂,这给电路的设计工作带来更的难度。因此通过计算机进行电子电路的辅助设计成为设计制作电路板的一个基本手段。PROTEL99SE是澳大利亚PROTELTECHNOLOGY公司于2000年推出的一款基于WINDOWS95/98以上环境下的全32位EDA(ELECTRONICDESIGNAUTOMATION电子设计自动化)道路设计自动化软件,是一个客户/服务器应用程序。而且PROTEL99SE包含众多的服务器程序,总体上可以分为5种,分别为原理图设计、PCB设计(包含信号完整性分析)、自动布线器、原理图混合信号仿真、PLD设计。由于其性能优越,PROTEL99SE已经成为电路设计不可缺少的理想辅助设计工具。4硬件电路设计介绍了本设计方案选择的情况,下面将着重按照前面所分析和采用的设计方案来完成具体的电路设计。41整体电路设计整体电路的控制核心为单片机AT89S52。超声波发射和接收电路中都对相应信号进行整形及放大,以保证测量结果尽可能精确。超声波探头接OUT口实现超声波的发射和接收。另外还有温度测量电路测量当时的空气温度,等到把数据送到单片机后使用软件对超声波的传播速度进行调整,使测量精度能够达到要求。整体结构图包括超声波发射电路,超声波接收电路,单片机电路,显示电路与温度测量电路等几部分模块组成。而超声波发射与接收电路还要加入放大电路。在发射后把信号放大,接收前也要把还再次放大。整体电路结构图如图41。图41超声波测距原理图单片机发出40KHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为T,再由软件进行判别、计算,得出距离数并送LED显示。图42超声波发送原理图42超声波测距系统设计421超声波发射器的注意事项超声波发射器向某一方向发射超声波,在发射超声波的同时开始计时,超声波在空气中传播,途中碰到障碍物反射后立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度约为340M/S,根据计时器记录的时间T,就可以计算出超声波发射点距障碍物的距离S,即为S340T/2,这就是所谓的时间差测距法。存在4个因素限制了该系统的最大可测距离超声波的幅度、反射的质地、反射回波和入射声波之间的夹角以及接收换能器的灵敏度。测距误差主要来源于以下几个方面(1)超声波波束对探测目标的入射角的影响;(2)超声波回波声强与待测距离的远近有直接关系,所以实际测量时,不一定是第一个回波的过零点触发;(3)超声波传播速度对测距的影响。稳定准确的超声波传播速度是保证测量精度的必要条件,波的传播速度取决于传播媒质的特性。传播媒质的温度、压力、密度对声速都将产生直接的影响,因此需对声速加以修正。(4)由于超声波利用接收发射波来进行距离的计算,因而不可避免地存在发射和反射之间的夹角,其大小为2,当很小的时候,可直接按式进行距2SCTV离的计算;当夹角很大的时候,必须进行距离的修正,修正的公式为(4COSTS1)实际的调试过程中,要十分注意发射和接收探头在电路板上的安装位置,这是因为每一种超声波发射、接收头都有一个有效测量夹角,这里用到的发射、接收头有效测量夹角为45。接收换能器对超声波脉冲的直接接收能力将决定该系统最小的可测距离。为了增加所测量的覆盖范围、减小测量误差,可采用多个超声波换能器分别作为多路超声波发射接收的设计方法。422超声波发射电路超声波测距技术经过几年的研究和发展,已经有了很多比较成熟的技术和设计方案,使本次设计能有很多可借鉴的资料,从中学到了很多宝贵的知识。对自己设计电路有很大帮助。超声波发射电路,要求功率尽量大些,发射距离大于15米,电路力求简单实用。我参考电路图如图43,44,45,46。吸取几个图的优点而避免他们的缺点,然后结合分析设计超声波的发射与接收电路。40KHZ超声波发射电路之一,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T4016的共振频率。T4016是反馈耦合元件,对于电路来说又是输出换能器。T4016两端的振荡波形近似于方波,电压振幅接近电源电压。S是电源开关,按一下S,便能驱动T4016发射出一串40KHZ超声波信号。电路工作电压9V,工作电流约25MA。发射超声波信号大于8M。电路不需调试即可工作。这样电路很简单与实用。图4340KHZ超声波发射电路40KHZ超声波发射电路之二,由VT1、VT2组成正反馈回授振荡器。电路的振荡频率决定于反馈元件的T4016,其谐振频率为40KHZ2KHZ。频率稳定性好,不需作任何调整,并由T4016作为换能器发出40KHZ的超声波信号。电感L1与电容C2调谐在40KHZ起作谐振作用。本电路适应电压较宽(312V),且频率不变。电感采用固定式,电感量51MH。整机工作电流约25MA。发射超声波信号大于8M。图4440KHZ超声波发射电路40KHZ超声波发射电路之三,它主要由四与非门电路完成振荡及驱动功能,通过超声换能器T4016辐射出超声波去控制接收机。其中门YF1与门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡频率,应为40KHZ。振荡信号分别控制由YF4、YF3组成的差相驱动器工作,当YF3输出高电平时,YF4一定输出低电平;YF3输出低电平时,YF4输出高电平。此电平控制T4016换能器发出40KHZ超声波。电路中YF1YF4采用高速CMOS电路74HC00四与非门电路,该电路特点是输出驱动电流大(大于15MA),效率高等。电路工作电压9V,工作电流大于35MA,发射超声波信号大于10M。图4540KHZ超声波发射电路40KHZ超声波发射电路之四,由LM555时基电路及外围元件构成40KHZ多谐振荡器电路,调节电阻器RP阻值,可以改变振荡频率。由LM555第3脚输出端驱动超声波换能器T4016,使之发射出超声波信号。电路简单易制。电路工作电压9V,工作电流4050MA。发射超声波信号大于8M。LM555可用NE555直接替代,效果一样。经过认真仔细的考虑和分析,本人选择使用NE555加外围电路构成多谐振荡器来产生频率为40KHZ的方波,再经过整形放大后来驱动超声波发射器发出超声波。NE555是一种用途很广的时基单元集成电路,其工作电压范围较宽,可在4518V范围内工作,其驱动电流可达200MA。NE555的内部中心电路是三极管Q15和Q17加正反馈组成的RS触发器。输入控制端有直接复位RESET端,通过比较器A1,复位控制端的TH、比较器A2置位控制的T。输出端为F,另外还有集电极开路的放电管DIS。它们控制的优先权是R、T、TH。利用NE555可以组成相当多的应用电路,甚至多达数百种应用电路,在各类书刊中均有介绍,例如家用电器控制装置、门铃、报警器、信号发生器、电路检测仪器、元器件测量仪、定时器、压频转换电路、电源应用电路、自动控制装置及其它应用电路都有着广泛的应用,这是因为NE555巧妙地将模拟电路和数字电路结合在一起的缘故。图4640KHZ超声波发射电路图47555内部结构与引脚本次设计中NE555电路的工作原理是单片机TXD口发出低电平,三极管Q5为PNP管所以导通,C极向外输出高电平。555芯片8脚接到高电平开始工作,4脚被拉高,多谐振荡电路不工作,当接到单片机的低电平信号后振荡器开始工作。VCC经外接电阻R1和R2向电容C充电,当C上的电压VC上升到2VCC/3时,反相比较器A1翻转输出低电平,RS触发器复位,即V0,3脚输出为“0”,则三极管导通,C经三极管和P1放电,当VC下降到VCC/3时,同相比较器A2翻转输出低电平,即S0,RS触发器置位,3脚输出变为“1”,三极管又截止,C又开始充电,如此周而复始,输出端便可获得周期性的矩形脉冲波,NE555的内部电路。由电路可知电容C的放电时间T1R2CLN2,充电时间T2(R1R2)CLN2,即可得出输出脉冲的频率为F1/T1T2。所以调节R1和R2即可改变脉冲频率使之等于40KHZ。如图46所示。图48方波产生电路为了使40KHZ的方波信号更为可靠,要对其进行整形及放大。信号由NE555的3脚向外输出,经过二极管D2整形,滤去低于低电平的部分,只保留零电平以上部分。整形后的信号经由三极管Q1、Q2放大,此时的信号已经很可靠,可以满足本次设计的需要。信号由OUT口输出,送入超声波探头中。此外在超声波发射电路中还加入了消除余振部分以保证电路可以更好的为超声波发射器提供信号,也使测量结果更为精确。因为超声波探头是一个感性元件,在一定程度上会表现出电感的性质。所以当发射电路停止向其输入脉冲信号后,如果没有合适的能量释放回路,则在其感性的作用下,超声波探头内部振荡仍会持续一段时间,仍然发射超声波,会对测量结果产生影响。加入这个电路就是为了在停止发送超声波的时候将发射器内部的能量释放到地,使其立即停止工作。单片机控制发送超声波的TXD口和消除余振的INT0口都是P3口的低四位,只需要由程序控制两个管脚输出相同的电平。在TXD口为高电平时停止发射超声波,此时INT0口也为高电平,使得三极管Q3导通,即打开消除余振功能,将剩余的能量接地。两个动作几乎是同时的,可以提高此后计时的准确性。电路如图49所示。图49方波消除余波电路图410发射电路模块423超声波接收电路在本次设计中选择了前置放大电路带通滤波电路后级放大电路的类似电路。通过波形整形,积分器,检波器,带通滤波,限幅放大和前置放大等实现接收超声波的功能。如图411所示由于在距离较远的情况下,超声波的回波很弱,因而转换为电信号的幅值也较小,为此要求将信号放大60万倍左右。如图411所示电路有三级放大前两级种放大100倍,采用高速精密放大器LM318,其带宽为15MHZ,放大倍数为100倍时,能充分满足要求;第三级采用LF353运算放大器,带宽为4MHZ,对于62倍的放大倍数,能充分满足条件。放大后的交流信号经光电隔离送入比较器,比较器的作用是将交流信号整形输出一个方波信号,此方波信号上升沿使D触发器触发,向CPU发中断申请。在中断服务程序中,读取时间计数器的计数值,并结合温度换算出的速度算出发射到接收的距离如图412所示图41140KHZ超声波接收电路图41240KHZ超声波接收电路图412所示电路为双稳态超声波接收机电路,由VT5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号经C7、C8向双稳电路送进一个触发脉冲,VT5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VD5截止,VT7截止,继电器K释放;当再来一个触发信号时,VT6由导通转变为截止状态,VD5导通,VT7导通,继电器K吸合由于增加了双稳电路,使之用于电灯、电扇、电视等电器遥控成为现实。调试时,在A点与16V(电源)之间用导线快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件参数。再加上设计中所选用的超声波探头里已经集成了上述超声波接收电路,一般情况下一次即可成功。为了测量结果的准确性,对于超声波探头接收到的信号同样需要进行处理。探头收到的回波信号经OUT口回到电路中,经过电容C10耦合,只保留测距需要的交流信号。电路中加入二极管D1同样是因为上面提到的探头的感性。由于感性的存在,在停止发送超声波的那一刻,OUT口会出现一个反向电动势,即电位低于地电位。这样,如果没有二极管保护,这个反向电动势将会全部加在三极管Q4的BE结上,如果探头的感性比较强,其反向电动势足以将BE结击穿。二极管D1提供了一个电流的泻放电路,也可以说是将反向电动势降到最小(07V左右),保护三极管及其他电路。电容C9对经过三极管的信号进一步整形,去掉信号波形中的毛刺,使波形更好。电阻R5起一个上拉电阻的作用,因为回波信号经过滤波后很可能会衰减的很严重,所以利用R5将其幅度上拉到5V,以便单片机更好的检测回波信号。CX20106是一款应用广泛的红外线检波接收的专用芯片,其具有功能强、性能优越、外围接口简单、成本低等优点,由于红外遥控常用的载波频率38KHZ与测距的超声波频率40KHZ比较接近,而且CX20106内部设置的滤波器中心频率F0五可由其5脚外接电阻调节,阻值越大中心频率越低,范围为3060KHZ。故本次设计用它来做接收电路。CX20106内部由前置放大器、限幅放大器、带通滤波器、检波器、积分器及整形电路构成。图413超声波回波信号整形电路图41440KHZ超声波接收电路43显示电路设计在单片机应用系统中,LED数码管的显示常用两种方法静态显示和动态扫描显示。所谓静态显示,就是每一个显示器都要占用单独的具有锁存功能的IO接口用于笔划段字形代码。这样单片机只要把要显示的字形代码发送到接口电路,就不用管它了,直到要显示新的数据时,再发送新的字形码,因此,使用这种方法较为简单与便利。可以提供单独锁存的IO接口电路很多,常用的就是通过串口外接串并转换器74LS164,扩展并行的IO口。需要几个数码管就扩展几个并行接口,数码管直接接在74LS164的输出脚上,单片机通过串口将要显示数据的字形码逐一的串行移出至74LS164的输出脚上数码管就可以显示相应的数字。在显示电路的设计上,利用单片机的P0P2口来控制数码管显示,这种接法虽然比较浪费管脚资源,但是对单片机的理论知识要求相对比较低,而且超声波发射和接收电路并不需要很多的管脚来支持,所以我选择这种方案。数码管的选择上,为了使数码管亮度大,本人选择了共阳极的数码管,数码管管脚接到低电平发亮。显示及其驱动电路的原理图见图415。图415数码管显示电路44稳压电源设计因为本次设计的元器件都可以使用12V或是5V的电源来驱动,所以我制作了一个稳压电源,它使用三端集成稳压器CW7812和CW7805来设计。通过变压器的直流电通过由二极管组成的桥式整流电路进入三端稳压元件,CW7812和CW7805分别为电路提供稳定的12V和5V直流电源。极性电容起滤波电容的作用,非极性电容则可以改善负载的瞬态影响,使电路稳定工作。如图416所示图416稳压电源图417单片机电路45硬件电路设计优化451提高测距的范围由于空气对超声波的吸收与超声波频率成正比,因此用来测距的超声波的频率不能很高。另一方面,频率越低,波长越长,测量的绝对误差就越大。所以,40KZ的超声波单频测距的范围只有56米,无法满足我们的要求。为了解决测量范围和测量精度之间的矛盾,我们采用双频测距的方法。其测距原理是控制器现发出一串频率为FH的超声波,串长度可以有1016个完整的波形,接着送出48FL低频率的超声波。这种在时域上连续的两种频率的超声波被前方的目标反射后,形成回波,回波经由接收器形成回波脉冲ECHOH和ECHOL。由于高频声波先发出,对于同一个目标,其回波ECHOH先到达CPU,因此,对于较近的目标,首先用高频超声波探测。当目标较远时,高频超声波被空气吸收而大幅衰减,接收器接收到的回波中只有低频超声波ECHOL。由于该装置在距离较远时对精度要求不是很高,所以可以用ECHOL探测。如图417所示图417双频超声波测距工作时序图T0、T1分别为高、低超声波发射的开始时间,T2、T3为高、低超声波回波到达的时间,所测得的距离分别为D1CT2T0/241D2CT3T1/242经试验可知,用双频超声波发射,量程可达到25M。452发射探头和接收探头间的影响超声波从发射到接收的时间间隔是由控制器内部的定时器来完成的。由于发射器探头与接收器探头的距离不大,有部分波未经被测物就直接绕射到接收器上,造成发送部分与接受部分的直接串扰问题。这一干扰问题可通过软件编程,使控制器不读取接收器在从发射开始到“虚假反射波“结束的时间段里的信号。这样,就有效的避免了干扰,但另一方面也形成了20CM左右的“盲区”。453超声波的衰减超声波在介质中传播时,随着传播距离的增加,其能量逐渐减弱,这种现象叫超声波的衰减。引起超声波衰减的主要原因有(1)扩散衰减超声波在传播过程中,由于声束的扩散能量逐渐分散,从而使单位面积内超声波的能量随传播距离的增加而减弱。超声波的声压和声强均随至声源的距离的增加而减弱。(2)散射衰减当声波要传播过程中遇到由不同声阻抗介质所组成的界面时,就将产生散乱反射,从而损耗了声波的能量,被散射的超声波在介质中沿着复杂的路径传播下去,最终变为热能。(3)粘滞衰减声波在介质中传播时,由于介质的粘滞性造成近质点之间的内摩擦从而使一部分声能转化热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,这就是介质的吸收现象。超声波的衰减有两种表示方法。一种是用底波多次反射的次数来表示。这种方法仅能粗略地比较声波在不同材料中的衰减程度,也就是对同样厚度的不同材料在同样的仪器灵敏度下,观察它们的底面反射波的次数,底波次数多的材料,说明声波在该材料中衰减少,底波次数少,则声波衰减比较严重。另一种是理论上定量计算的表示方法,即用衰减系数来表示声波的衰减。454系统干扰因素测量装置的干扰来自多方面。机械振动或冲击会对传感器产生严重的干扰光线对测量装置中的半导体器件会产生干扰温度的变化会导致电路参数的变动,产生干扰以及电磁干扰等等。干扰窜入测量装置有三条主要途径,如图418ZZZ电磁干扰电源干扰信道干扰单片机测量图418产生误差的途径(1)电磁干扰干扰以电磁波辐射的方式经空间窜入测量装置。信道干扰。信号在传播过程中,通道中各元器件产生的噪声或非线性畸变所造成的干扰。(2)电源干扰这是由于电源波动、市电电网干扰信号的窜入以及装置供电电源电内阻引起各单元电路相互祸合造成的干扰。一般情况下,电磁感应和静电感应干扰主要由发电机、电动机、大功率继电器、电台等的感应引起,其强度远小于电源接地系统和U0系统的干扰,这种干扰可采用良好的屏蔽与正确的接地、高频滤波加以抑制。因此,在微机系统中,供电系统与V0通道的干扰是问题的主要方面。(3)供电系统干扰及其抗干扰由于供电电网面对各种用户,电网上并联着各种各样的用电器。用电器在开关机时都会给电网带来强度不一的电压跳变。这种跳变的持续时间很短,人们称之为尖峰电压。它会影响测量装置的正常工作。(4)电网电源噪声把供电电压跳变的持续时间ATLS者称为过压和欠压噪声。供电电网内阻过大或网内用电器过多会造欠压器声。供电电压跳变的持续时间LMS0X1000CC1TU1/若温度小于0,TU1C4/去掉低四位即为整数温度值,无需00625RETURNCELSERETURNR/返回0XFF表示未检测到18B20芯片542实现根据温度转化声速INTC_SPEEDVOID/根据温度查算声速值UCHARYYREAD_TEMPERATURE/采温度IFR/若温度有变化则按温度值取声速T_CY/温度值变化后的温度值IFTU0SPEED332T_C0607/温度为正则声速ELSESPEED332T_C0607/温度为负则声速ELSESPEED3465/若1820不存在即无法读取温度,声速3465M/S(取25度)RETURNSPEED543实现距离计算FLOATDIS_COUNT/距离计算函数FLOATCMCMTH1256TL1CM7610/减去限制10M的初值可调误差值CMSPEED/计算距离US34650MCM/20000/转换为S单程RETURNCM544主函数的结构与内容VOIDMAINVOID/主函数UCHARWREAD_TEMPERATURE/先采一次温度FORW11W27C_SPEEDW0/测WU次距后取一次温度声速WDISDIS_COUNT/转换距离FLAG0IFDIS996TEMP00XF7TEMP10XF7TEMP20XF7/溢出处理ELSEBELL0LED_TEMPDISBELL1SHOW10/测量数据显示TO0SHOW10KEYIFSHOW_TEMPERATURE1GOTOT_SHOW/如果WD为0则只显示温度6结束语本文借助于模数电技术和单片机技术的结合,解决了超声波测距的一些难题。本毕业设计以AT89S52为核心,灵活的运用超声波换能集成电路作为超声波的接收电路,在讨论了超声波测距原理、硬件电路实现和软件设计方法基础上,完成了超声波测距的设计要求。从课题选择、方案论证到具体设计,我查阅了大量的资料。对一些疑难的问题,我得到了老师和同学的帮助。在四年的本科学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向老师们表示深深的感谢和崇高的敬意。不积跬步何以至千里,本设计能够顺利的完成,也归功于各位任课老师的认真负责,使我能够很好的掌握和运用专业知识,并在设计中得以体现。正是有了他们的悉心帮助和支持,才使我的毕业论文工作顺利完成,在此向全体老师表示由衷的谢意。感谢他们四年来的辛勤栽培。参考文献1阎石数字电子技术基础M北京高等教育出版社,200462康华光模拟电子技术基础M北京高等教育出版社,200413张培仁基于C语言编程的MCS52单片机原理与应用北京清华大学出版社,200344纪良文,蒋静坪机器人超声测距数据的采集与处理电子技术应用,200175瞿金辉,周蓉生超声波测距系统的设计J中国仪器仪表,200786袁佑新,吴妍,刘苏敏,等可视汽车倒车雷达预警系统设计J微计算机信息,2006107宋永东,周美丽,白宗文,等高精度超声波测距系统设计J现代电子技术,200838吴斌方,刘民超声波测距传感器的研究J湖北工学院学报,200469高川,谈振藩基于AT89C2051的超声波测距系统应用科技,200611致谢本系统在孙干超老师的亲切关怀和悉心指导以及同学们的帮助下完成的。感谢他在此次毕业设计过程中给予我的悉心指导与各方面的帮助,他给了我许多非常有益的建议和意见,使我在思路上得到了很大的开阔,从中认识到了自己存在的不足,并且学到了很多非常宝贵的知识。他严谨的治学态度和踏实的工作作风也给我留下了非常深刻的印象,我不仅学到了研究的方法,更令我明白了一个很重要的道理做学问应以科学严谨的态度,脚踏实地一步一个脚印地认真去做,切不可好高鹜远急躁冒进,这些都使我受益匪浅,也极大的激励了我,使我能在紧张的时间里完成我的毕业设计并达到设计的要求。同时还要感谢给我们提供优越学习条件和优良仪器的各位实践部老师。同时也要感谢系里其它同学和我的朋友在设计中给我提供的帮助和支持。最后感谢各位老师对我论文的悉心审阅与批评指正。附录附录一电路PCB图附录二程序代码/超声波测距系统12M晶振/INCLUDE“REG2051H“INCLUDEINCLUDE/INCLUDE“MATHH“DEFINEUINTUNSIGNEDINTDEFINEUCHARUNSIGNEDCHARDEFINELED_DATAP0/定义LED显示数据为P1口DEFINEOFFP3SBITLED_1HP27/定义数码管百位片选SBITLED_2HP26/定义数码管十位片选SBITLED_3HP25/定义数码管个位片选SBITDQP34/18B20定义端口SBITBELLP22/定义蜂鸣器,为1则不响,为0时响SBITSOUTP37/定义超声波输出引脚SBITK1P10/定义按键SBITK2P11SBITK3P12BITR0/18B20存在标志位0为不存在,1为存在BITFLAG0/定义外部中断1标志位BITTO0/定义T1中断1标志位BITTU0/定义温度正、负标示位0为正1为负BITSHOW_TEMPERATURE0/定义显示温度标志位UCHART_C/存温度值UINTIUINTDIS/定义实形距离变量FLOATSPEED34650/3465M/S25度UCHARTEMP30XF7,0XF7,0XF7/定义显示暂存区/显示段代码表UCHARCODELED00X28,0XEE,0X32,0XA2,0XE4,0XA1,0X21,0XEA,0X20,0XA0,0XF7,/09/第一位数码管显示段码UCHARCODELED10X08,0XCE,0X12,0X82,0XC4,0X81,0X01,0XCA,0X00,0X80,/09带小数点/温度部分涵数声明VOIDTIME_11USUINTX/延时11USVOIDLED_T_CUINTX/温度显示转换UINTREAD_TEMPERATUREVOID/读温度VOIDWRITECHARWR/写1820UINTREADVOID/读1820UCHARRESETVOID/复位1820/测距部分涵数声明VOIDLED_DISPLAYVOID/LED显示函数VOIDTIMEUINTX/延时1MSVOIDSEND_40KVOID/输出20个40K方波函数VOIDLED_TEMPUINTX/显示转换VOIDTT1VOID/装入初值UINTC_SPEEDVOID/根据温度查表取声速值FLOATDIS_COUNT/距离计算函数/延时11USVOIDTIME_11USUINTXFORX0X/UCHARRESETVOID/复位1820R0DQ1_NOP_NOP_DQ0/置低电平TIME_11US50/等待500USDQ1/置高电平TIME_11US6/等待66USWHILEDQ0R1/读响应_NOP_RETURNR/返回响应值1存在,0不存在/VOIDWRITECHARWR/向总线上写一个字节UCHARIFORI8I0I/写8位,一位一位地写DQ0/设为低电平,写开始_NOP_NOP_NOP_NOP_DQWR/最低位移出TIME_11US6/延时66US确保数据送出DQ1/停止WRWR/2/算法,相当于右移1位TIME_11US1/UINTREADVOID/从总线上读取2个字节UCHARIUINTV0FORI16I0IDQ0/开始信号_NOP_NOP_V1DQ1/恢复_NOP_NOP_NOP_NOP_/延时IFDQV|0X8000/数据拼装TIME_11US6/延时DQ1RETURNV/UINTREAD_TEMPERATUREVOID/读取温度,返回整数值UINTCRESET/复位18B20TU0/先置位温度正负标示为正IFRWRITE0XCC/跳过多传感器识别SKIOROMWRITE0XBE/发读内部9字节内容指令CREAD/读两个字RESET/读完两个字节后复位WRITE0XCC/跳过多传感器识别SKIOROMWRITE0X44/发启动温度变换指令IFC0X1000CC1TU1/若温度小于0,TU1C4/去掉低四位即为整数温度值,无需00625RETURNCELSERETURNR/返回0XFF表示未检测到18B20/VOIDLED_T_CUINTX/温度显示转换IFTU1TEMP20X26/2位ELSETEMP20X37/显示温度符号,正则显示CIFRTEMP1LED0X10/1位ELSETEMP10XF7/IFRTEMP0LED0X/10/个位ELSETEMP00XF7/VOIDTIMEUINTX/普通延时函数UINTJFORJ0J0I_NOP_NOP_NOP_SOUTSOUT/FLOATDIS_COUNT/距离计算函数FLOATCMCMTH1256TL1CM7610/减去限制10M的初值可调误差值CMSPEED/计算距离US34650MCM/20000/转换为S单程RETURNCM/VOIDLED_DISPLAYVOID/LED显示函数LED_DATATEMP2LED_3H0/显示个位,带小数点TIME5LED_3H1LED_DATATEMP1LED_2H0/显示1位,无小数点TIME5LED_2H1LED_DATATEMP0LED_1H0/显示2位,无小数点TIME5LED_1H1LED_DATA0XFF/关闭数据输出显示/VOIDLED_TEMPUINTX/显示转换/XUNSIGNEDINTXTEMP2LED0X10/2位X/10TEMP1LED0X10/1位X/10TEMP0LED1X/个位/装入初值VOIDTT1VOIDTH16553558000/256/初值装入定时器T1,用于发射超声波后计数,TL16553558000256/初值限定测量范围0XLED_DISPLAY/多次显示函数/VOIDKEYVOID/键盘扫描IFK10|K20|K30SHOW5IFK10BELL0SHOW_TEMPERATURESHOW_TEMPERATUREWHILEK10BELL1IFK20BELL0WHILEK20BELL1IFK

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论