




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力2在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题重点、难点重点邻补角、对顶角的概念,对顶角性质与应用难点理解对顶角相等的性质的探索教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读,看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件学生欣赏图片,阅读其中的文字师生共同总结我们生活的世界中,蕴涵着大量的相交线和平行线本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题二、观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题剪布时,用力握紧把手,引发了什么变化进而使什么也发生了变化学生观察、思想、回答,得出握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大教师点评如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征三、认识邻补角和对顶角,探索对顶角性质1学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角各对角的位置关系如何根据不同的位置怎么将它们分类1ODCBA学生思考并在小组内交流,全班交流当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如AOC和BOC有一条公共边OC,它们的另一边互为反向延长线AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线2学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等3学生根据观察和度量完成下表两直线相交所形成的角分类位置关系数量关系4321ODCBA教师再提问如果改变AOC的大小,会改变它与其它角的位置关系和数量关系吗4概括形成邻补角、对顶角概念1师生共同定义邻补角、对顶角有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角2初步应用练习1下列说法,你同意吗如果错误,如何订正邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上邻补角可看成是平角被过它顶点的一条射线分成的两个角邻补角是互补的两个角,互补的两个角也是邻补角5对顶角性质1教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么并说明理由2教师把说理过程,规范地板书在图1中,AOC的邻补角是BOC和AOD,所以AOC与BOC互补,AOC与AOD互补,根据“同角的补角相等”,可以得出AODBOC,类似地有AOCBOD教师板书对顶角性质对顶角相等强调对顶角概念与对顶角性质不能混淆对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系3学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象四、巩固运用1例如图,直线A,B相交,140,求2,3,4的度数BA4321教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程2练习1课本P5练习2补充判断下列图中是否存在对顶角21212121五、作业课本P91,2,P107,8垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1使学生掌握垂线的概念。2会用三角尺或量角器过一点画一条直线的垂线。3使学生理解并掌握垂线的第一个性质。(二)能力训练点1通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。2通过垂线的画法,进一步培养学生的实际动手操作能力。(三)德育渗透点使学生初步树立辩证唯物主义观点。(四)重点和难点分析(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念(2)本节的难点是空间直线与平面、平面与平面的垂直关系二、学法引导1教师教法活动投影片演示直观教学法,引导发现法2学生学法在教师的指导下,自主式学习教具学具准备三角尺、量角器、自制胶片教学手段1通过创设情境,复习基础知识,引入课题2通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课3通过师生互答完成归纳小结教学步骤(一)明明目标通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力(二)整体感知以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容(三)教学过程创设情境,复习引入提出问题如右图,(1)AOC的对顶角是哪个角这两个角的关系怎样(2)AOC的邻补角有几个是哪几个角教师演示(活动投影片)转动直线CD的同时,用量角器量直线AB、CD相交所得的角,多变换几种位置一直转到使直线CD与AB所成的角有一个角AOC90(如右图)学生活动当AOC90,口答BOD、AOD、BOC等于多少度为什么这种位置关系有几种直线AB、CD的位置关系怎样学生回答完后,引入课题【板书】22垂线【教法说明】因为对顶角、邻补角及对顶角的性质,是建立垂直概念的基础之上,所以在讲新课前要复习巩固这些内容探究新知,讲授新课提出问题什么样的两条直线互相垂直学生活动学生思考上面的问题,同桌相互叙述,互相纠正补充,语句通顺后举手回答教师根据学生回答情况,适当加以引导点拨,然后板书【板书】1垂直定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的里线,它们的支点叫做垂足提出以下问题帮助学生理解定义(投影显示,投影片1)(1)“有一个角是直角”是指四个角中的哪一个角(2)“互相垂直”是什么意思(3)相交的两条直线都垂直吗【教法说明】用活动投影片演示“两条直线互相垂直”这个概念的产生过程,使学生形成对概念的感性认识再回过头来进行定义,并且从演示过程中看到垂直是两条直线相交的一种特殊情况,认识了事物间的发展变化的辩证关系,提出问题帮助学生理解概念,比教师单纯“强调”效果更好学生活动让学生举出日常生活和生产中常见的垂直关系的实例(十字路口的两条道路;方格本的横线和竖线;铅垂线和水平线)【教法说明】通过举例,启发学生广泛联想,一方面让学生知道两直线垂直的概念是从实物中抽象出来的;另一方面使理论与实际相联系2垂直的记法、读法和判定学生活动让学生自己尝试学习,阅读课本第60页的内容,然后师生间相互交流归纳直线垂直的记法读法直线AB、CD互相垂直,记作“ABCD”域“CDAB”,读作“AB垂直于CD”,如果垂足为O,记作“ABCD,垂足为O”(如图右上)垂直判定AOC90,ABCD(垂直的定义)ABCD(已知),AOC90(垂直的定义)学生活动用AOD、BOD或BOC让学生重复练习正、反两步推理【教法说明】让学生自己尝试学习,可充分发挥学生的积极性、主动性,对垂直定义做正、反两方面的推理可加深学生对定义的理解,一方面为了渗透符号推理格式,熟悉符号的使用;另一方面可加深学生对定义的理解,定义既可以作判定用,又可以当性质用3垂线的画法及性质学生活动让学生用三角板或量角器,过直线上一点或者直线外一点画直线的垂线,回答过直线上(直线外)一点能不能画这条直线的垂线能画几条(请一个学生到黑板上去画)通过画图,得垂线的第一条性质过一点有且只有一条直线与已知直线垂直提出问题(1)“过一点”包括几种情况(2)“有且只有”是什么意思(“有”表示存在,“只有”表示惟一)【教法说明】垂线的性质放手让学生自己动手画图,自己总结,培养了学生动手,动脑,发现问题和解决问题的能力,达到能力培养的目标学生活动让学生尝试画一条线段或射线的垂线(一个学生板演)【教法说明】学生画图时,教师巡回指导,发现问题,及时纠正,使学生加深印象,进一步培养学生动手操作能力布置作业课本第70页习题21A组第5题。同位角、内错角、同旁内角教案第五章第一节第三课时一、素质教育目标(一)知识教学点1理解同位角、内错角、同旁内角的概念2结合图形识别同位角、内错角、同旁内角(二)能力训练点1通过变式图形的识图训练,培养学生的识图能力2通过例题口答“为什么”,培养学生的推理能力(三)德育渗透点从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点(四)美育渗透点通过“三线八角”基本图形,使学生认识几何图形的位置美(五)重点难点分析本节教学的重点是同位角、内错角、同旁内角的概念难点为在较复杂的图形中辨认同位角、内错角、同旁内角掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础二、学法引导1教师教法尝试指导,讨论评价、变式练习、回授2学生学法主动思考,相互研讨,自我归纳三、教具学具准备投影仪、三角板、自制胶片四、教学步骤(一)明确目标使学生掌握“三线八角”,并能在图形中进行辨识(二)整体感知以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知(三)教学过程创设情境,复习导入回答下列问题1如图,1与3,2与4是什么角它们的大小有什么关系2如图,1与2,L与4是什么角它们有什么关系3如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角4如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角5三条直线相交除上述两种情况外,还有其他相交的情形吗学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系【板书】23同位角、内错角、同旁内角【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况认识事物间是发展变化的辩证关系尝试指导,学习新知1学生自己尝试学习,阅读课本第67页例题前的内容2设计以下问题,帮助学生正确理解概念(1)同位角4和8与截线及两条被截直线在位置上有什么特点图中还有其他同位角吗(2)内错角3和5与截线及两条被截直线在位置上有什么特点图中还有其他内错角吗(3)同旁内角4和5与截线及两条被截直线在位置上有什么特点图中还有其他同分内角吗(4)同位角和同分内角在位置上有什么相同点和不同点内错角和同旁内角在位置上有什么相同点和不同点(5)这三类角的共同特征是什么3对上述问题以小组为单位展开讨论,然后学生间互相评议4教师对学生讨论过程中所发表的意见进行评判,归纳总结在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解投影显示(投影片2)例题如图,直线DE、BC被直线AB所截,(1)L与2,1与3,1与4各是什么关系的角(2)如果14,那么1和2相等吗1和3互补吗为什么教法说明例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练变式训练,巩固新知投影显示(投影片3)【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是C,即A和B被C所截,如C和A被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提投影显示(投影片4)【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位这“三看”又离不开主线截线的确定,让学生知道无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形如第2题由已知条件结合所求部分,对各个小题分别分解图形如下(四)总结、扩展1本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线截线,就能正确识别这三类角2相交直线3教师指着图中的一条被截直线,问“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系”八、布置作业课本第72页B组第4题平行线第五章第二节第一课时一教学目标1了解平行线的概念,理解同一平面内两条直线的两种位置关系2认识平行公理1、23了解什么叫公理重点平行线的公理难点利用平行线公理解决问题二教学手段与方法师生共同探讨三教学准备三角尺四教学过程探索1如图,已知直线AB和直线外一点P,你能过点P画一条直线与AB平行吗把你的画法与同伴交流,看谁的方法好思考在同一平面内,两条直线有几种位置关系想一想是否存在既不平行又不相交的两条直线探索2在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗试一试,并把你的折法与同伴交流猜一猜如图,经过直线AB外一点P,可以画两条直线和这条直线平行吗平行公理1经过直线外一点,有且只有一条直线与这条直线平行见P14释义本书中所说的基本事实是人们在长期实践中总结出来的结论,基本事实也称为公理公理可以作为以后推理的依据探索3如图,P是直线AB外一点,CD与EF相ABPABPCDEFABP交于P若CD与AB平行,则EF与AB平行吗为什么探索4如图,若CDAB,且EFAB,则CD与EF有可能相交吗为什么平行公理2如果两条直线都和第三条直线平行,那么这两条直线也互相平行友情提示若ABC字母表示数,那么,AC,根据的是_若AC,BC字母表示直线,那么AB根据的是_练习如图,已知ABC,分别取AB、AC的中点D、E,连结D、E猜一猜直线DE与直线BC之间有怎样的位置关系另外再画一个三角形看一看,是否存在同样的位置关系作业1用剪刀剪一块任意四边形的硬纸板下一节课要用2你会画梯形吗你会画等腰梯形吗试一试工具不限3如图,已知四边形ABCD,分别取AB、BC、CD、DA的中点E、F、G、H,顺次连ABCDEFABCABCD接EF、FG、GH、HE你发现了什么再画一个四边形试一试平行线的判定第五章第二节第二课时一、教学目标1了解推理、证明的格式,掌握平行线判定公理和第一个判定定理2会用判定公理及第一个判定定理进行简单的推理论证3通过模型演示,即“运动变化”的数学思想方法的运用,培养学生的“观察分析”和“归纳总结”的能力4重点在观察实验的基础上进行公理的概括与定理的推导5难点判定定理的形成过程中逻辑推理及书写格式二、学法引导1教师教法启发式引导发现法2学生学法独立思考,主动发现三、教具学具准备三角板、投影胶片、投影仪、计算机四、教学步骤创设情境,引出课题师上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影)1两条直线不相交,就叫平行线2与一条直线平行的直线只有一条3如果直线、都和平行,那么、就平行学生活动学生口答上述三个问题【教法说明】通过三个判断题,使学生回顾上节所学知识,第1题在于强化平行线定义的前提条件“在同一平面内”,第2题不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法师测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗根据什么学生能判定垂直,根据垂直的定义师在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗学生活动学生思考,如何测定两条直线是否平行教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢学生活动学生思考,在前面复习平行公理推论的情况下,有的学生会提出,再作一条直线,让,再看是否平行于就可以了师这种想法很好,那么,如何作,使它与平行若作出后,又如何判断是否与平行学生活动学生思考老师的提问,意识到刚才的回答,似是而非,不能解决问题师显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的平行线的判定(板书课题)板书25平行线的判定(1)【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断这时,学生会考虑平行公理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入新课内容探究新知,讲授新课教师给出像课本第78页图220那样的两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让从小变大,说出直线与的位置关系变化规律【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论图1学生活动转动到不同位置时,也随着变化,当从小变大时,直线从原来在右边与直线相交,变到在左边与相交师在这个过程中,存在一个与不相交即与平行的位置,那么多大时,直线呢也就是说,我们若判定两条直线平行,需要找角的关系师下面先请同学们回忆平行线的画法,过直线外一点画的平行线学生活动学生在练习本上完成,教师在黑板上演示(见图1)师由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么图2学生保证了两个同位角相等师由此你能得到什么猜想学生两条直线被第三条直线所截,如果同位角相等,那么两条直线平行师我们的猜想正确吗会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢教师用计算机演示运动变化过程在观察实验之前,让学生看清角和角(如图2),而后开始实验,让学生充分观察并讨论能得出什么结论学生活动学生观察、讨论、分析总结了,当时,不平行,而无论取何值,只要,、就平行图3教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理板书两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成同位角相等,两直线平行即(已知见图3),(同位角相等,两直线平行)【教法说明】通过实际画图和用计算机演示运动变化过程,让学生确信公理的正确尝试反馈,巩固练习(出示投影)图41如图4,吗2,当时,就能使【教法说明】这两个题目旨在巩固所学的判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想(出示投影)直线、被直线所截图51见图5,如果,那么与有什么关系2与有什么关系3与是什么位置关系的一对角学生活动学生观察,思考分析,给出答案时,与相等,与是内错角师与满足什么条件,可以得到为什么学生活动,因为,通过等量代换可以得到师时,你进而可以得到什么结论学生活动师由此你能总结出什么正确结论学生活动内错角相等,两直线平行师也就是说,我们得到了判定两直线平行的另一个方法板书两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简单说成内错角相等,两直线平行【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯师上面的推理过程,可以写成(已知),(对顶角相等),(已证),(同位角相等,两直线平行)【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取的精神教师指出方括号内的“”,就是上面刚刚得到的“”,在这种情况下,方括号内这一步可以省略尝试反馈,巩固练习(出示投影)1如图1,直线、被直线所截(1)量得,就可以判定,它的根据是什么(2)量得,就可以判定,它的根据是什么2如图2,是的延长线,量得(1)从,可以判定哪两条直线平行它的根据是什么(2)从,可以判定哪两条直线平行它的根据是什么图1图2学生活动学生口答【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题五总结扩展2结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式六、布置作业课本第97页习题22组第4、5、6(1)(2)题平行线的性质第五章第三节第一课时教学目标1使学生理解平行线的性质,能初步运用平行线的性质进行有关计算2通过本节课的教学,培养学生的概括能力和“观察猜想证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力3培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性教学重点平行线性质的研究和发现过程是本节课的重点教学难点正确区分平行线的性质和判定是本节课的难点教学方法开放式师生互动教学准备三角尺教学过程一、复习1请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么2、把这三句话已知和结论颠倒一下,可得到怎样的语句它们正确吗3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确试举例说明。如、“若AB,则A2B2”是正确的,但“若A2B2,则AB”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。二、新课1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即两条平行线被第三条线所截,同位角相等。简单说成两直线平行,同位角相等。2、现在我们来用这个性质公理,来证明另两句话的正确性。想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成已知如图,直线AB求证(1)14;(2)12180证明AB(已知)13(两直线平行,同位角相等)又34(对顶角相等)14(2)AB(已知)13(两直线平行,同位角相等)又23180(邻补角的定义)12180思考如何用(1)来证明(2)例1、如图,是梯形有上底的一部分,已经量得1115,D100,梯形另外两个角各是多少度解梯形上下底互相平行A与B互补,D与C互补B18011565C18010080答梯形的另外两个角分别是65,80小结平行性质与判定的区别适当总结几何的学习,既可以培养学生的逻辑思维能力,也可以培养学生分析问题,解决问题的能力对于好的学生,可以引导他们总结如何学好几何注意文字语言,图形语言,符号语言间的相互转化对简单的题目,能做到想得明白,写得清楚,书写逐渐规范作业P879、10命题、定理第五章第三节第二课时学习目标知识目标了解命题、真命题、假命题、定理的含义,会区分命题的题设和结论。能力目标能区分命题的题设和结论;会把一些简单命题改写成“如果那么”的形式情感目标初步体会合理化思想学习重点命题、定理的概念;区分命题的题设和结论。学习难点区分命题的题设和结论,会把一些简单命题改写“如果那么”的形式教学手段引导探究教学准备教案教学过程一创设情境复习导入教师出示下列问题1平行线的判定方法有哪些2平行线的性质有哪些二尝试活动探索新知了解命题和它的构成教师给出下列语句,如果两条直线都与第三条直线平行,那么这条直线也互相平行等式两边都加同一个数,结果仍是等式对顶角相等如果两条直线不平行,那么同位角不相等教师给出命题的定义判断一件事情的语句,叫做命题命题的组成命题由题设和结论两部分组成题设是已知事项,结论是由已知事项推出的事项命题的形成真命题与假命题教师出示问题如果两个角相等,那么它们是对顶角。如果ABBC那么AB如果两个角互补,那么它们是邻补角。三尝试反馈理解新知学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础。注意平行线的判定方法三种,另外还有平行公理的推论学生学生能由教师的引导分析每个语句的特点思考你能说一说这4个语句有什么共同点吗并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断初步感受到有些数学语言是对某件事作出判断的。判断语句“画ABCD”有没有判断成分,是不是命题学生并能举例说明是命题和不是命题的语句与同组同学共同分析上述四个命题的题设和结论,重点分析第、语句第命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。第命题中,“两个角是对顶角”是题设,“这两角相等”是结论。学生能思考你认为这几句话对吗它们是不是命题学生能由教师的讲解理解命题有真有假,并能通过举反例说明命题的错误。解答1是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”2第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够。学生能由教师的引导进行思考通过本节课的学习,你有什么收获呢你还有什么疑惑呢总结本节课所学习的知识并能把本节课的知识形成知识网络。明确命题有正确与错误之分命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据。1“等式两边乘同一个数,结果仍是等式”是命题吗它们题设和结论分别是什么2命题“两条平行线被第三第直线所截,内错角相等”是正确的命题“如果两个角互补,那么它们是邻补角”是正确吗再举出一些命题的例子,判断它们是否正确总结拓展教师引导学生完成本节课的小结,强调重要的知识点。布置作业习题53第11题。平移第五章第四节第一课时学习目标1经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;2通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。学习重点平移的基本内涵与基本性质。学习难点平移特征的探索及理解。教学手段师生共同探讨教学准备课件三角尺教学过程设计一、创设问题情境1想一想(课件演示)观察图片中上升的电梯,运动的小火车,滑雪的人,传送带上的电视机与手扶电梯上的人,思考这些都给我们什么形象讨论得出平移的定义平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。2你能发现平移前后两个图形相比较,什么没有改变,什么发生了改变吗提示形状、大小、位置二、探索过程探索平移的基本性质实例11传送上的电视机的形状、大小在运动前后是否发生了改变(课件演示)没有2如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH,那么四边形ABCD与四边形EFGH形状与大小是否相同没有平移定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。根据平移定义,探讨平移的基本性质想一想1、下图中线段AE,BF,CG,DH有怎样的位置关系2、下图中每对对应线段之间有怎样的位置关系3、下图中有哪些相等的线段、相等的角EFGHACBD学生分组讨论得出平移的基本性质经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。例题讲述如图,平移三角形ABC,使点A移动到点A,画出平移后的三角形A,B,C,ABCA,三预习题处理练习一练习二练习三四反馈提高练习四由ABC平移而得的三角形共有多少个ACB解共有5个。练习五如图,ABC是由CEF平移而得,图中有哪些相等的线段相等的角CABFE解ABCE,BCEF,ACCFBEBACECFCEB,ACBCFECBEABCCEFBCE练习六能由AOB平移而得的图形是哪个ABCDEFO解能由AOB平移而得的图形是FOE、COD本课小结平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移的性质平移不改变图形的形状和大小。经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。作业布置P304,5,6以下内容与本文档无关以下内容与本文档无关。以下为赠送文档,祝你事业有成,财源广进,身体健康,家庭和睦高效能人士的50个习惯在行动前设定目标有目标未必能够成功,但没有目标的肯定不能成功。著名的效率提升大师博思崔西説“成功就是目标的达成,其他都是这句话的注释。”现实中那些顶尖的成功人士不是成功了才设定目标,而是设定了目标才成功。一次做好一件事著名的效率提升大师博思崔西有一个著名的论断“一次做好一件事的人比同时涉猎多个领域的人要好得多。”富兰克林将自己一生的成就归功于对“在一定时期内不遗余力地做一件事”这一信条的实践。培养重点思维从重点问题突破,是高效能人士思考的一项重要习惯。如果一个人没有重点地思考,就等于无主要目标,做事的效率必然会十分低下。相反,如果他抓住了主要矛盾,解决问题就变得容易多了。发现问题关键在许多领导者看来,高效能人士应当具备的最重要的能力就是发现问题关键能力,因为这是通向问题解决的必经之路。正如微软总裁兼首席软件设计师比尔。盖茨所説“通向最高管理层的最迅捷的途径,是主动承担别人都不愿意接手的工作,并在其中展示你出众的创造力和解决问题的能力。”把问题想透彻把问题想透彻,是一种很好的思维品质。只要把问题想透彻了,才能找到问题到底是什么,才能找到解决问题最有效的手段。不找借口美国成功学家格兰特纳说过这样的话“如果你有为自己系鞋带的能力,你就有上天摘星星的机会”一个人对待生活和工作是否负责是决定他能否成功的关键。一名高效能人士不会到处为自己找借口,开脱责任;相反,无伦出现什么情况,他都会自觉主动地将自己的任务执行到底。要事第一创设遍及全美的事务公司的亨瑞。杜哈提说,不论他出多小钱的薪水,都不可能找到一个具有两种能力的人。这两种能力是第一,能思想;第二,能按事情的重要程度来做事。因此,在工作中,如果我们不能选择正确的事情去做,那么唯一正确的事情就是停止手头上的事情,直到发现正确的事情为止。运用20/80法则二八法则向人们揭示了这样一个真理,即投入与产出、努力与收获、原因和结果之间,普遍存在着不平衡关系。小部分的努力,可以获得大的收获;起关键作用的小部分,通常就能主宰整个组织的产出、盈亏和成败。合理利用零碎时间所谓零碎时间,是指不构成连续的时间或一个事务与另一事务衔接时的空余时间。这样的时间往往被人们毫不在乎地忽略过去,零碎时间虽短,但倘若一日、一月、一年地不断积累起来,其总和将是相当可观的。凡事在事业上有所成就的人,几乎都是能有效地利用零碎时间的人。习惯10、废除拖延对于一名高效能人士来説,拖延是最具破坏性的,它是一种最危险的恶习,它使人丧失进取心。一旦开始遇事推托,就很容易再次拖延,直到变成一种根深崹蒂固的习惯。习惯11、向竞争对手学习一位知名的企业家曾经说过,“对手是一面镜子,可以照见自己的缺陷。如果没有了对手,缺陷也不会自动消失。对手,可以让你时刻提醒自己没有最好的,只有更好。”习惯12、善于借助他人力量年轻人要成就一番事业,养成良好的合作习惯是不可少的,尤其是在现代职场中,靠个人单打独斗的时代已经过去了,只有同别人展开良好的合作,才会使你的事业更加顺风顺水。如果你要成为一名高效能的职场人士,就应当养成善于借助他人力量的好习惯。习惯13、换位思考在人际的相处和沟通里,“换位思考”扮演着相当重要的角色。用“换位思考”指导人的交往,就是让我们能够站在他人的立场上,设身处地理解他人的情绪,感同身受地明白及体会身边人的处境及感受,并且尽可能地回应其需要。树立团队精神一个真正的高效能人士,是不会依仗自己业务能力比别人更优秀而傲慢地拒绝合作,或者合作时不积极,倾向于一个人孤军奋战。他明白在一个企业中,只有团队成功,个人才能成功。善于休息休息可以使一个人的大脑恢复活力,提高一个人的工作效能。身处激烈的竞争之中,每一个人如上紧发条的钟表因此,一名高效能人士应当注意工作中的调节与休息,这不但于自己健康有益,对事业也是大有好处的。及时改正错误一名高效能人士要善于从批评中找到进步的动力批评通常分为两类,有价值的评价或是无理的责难不管怎样,坦然面对批评,并且从中找寻有价值、可参考的成分,进而学习、改进、你将获得意想不到的成功。责任重于一切著名管理大师德鲁克认为,责任是一名高效能工作者的工作宣言在这份工作宣言里,你首先表明的是你的工作态度你要以高度的责任感对待你的工作,不懈怠你的工作、对于工作中出现的问题能敢于承担这是保证你的任务能够有效完成的基本条件。不断学习一个人,如果每天都能提高1,就没有什么能阻挡他抵达成功成功与失败的距离其实并不遥远,很多时候,它们之间的区别就在于你是否每天都在提高你自己如果你不坚持每天进步1的话,你就不可能成为一名高效能人士让工作变得简单简单一些,不是要你把事情推给别人或是逃避责任,而是当你焦点集中很清楚自己该做那些事情时,自然就能花更小的力气,得到更好的结果重在执行执行力是决定一个企业成败的关键,同时也是衡量一个人做事是否高效的重要标准只做适合自己的事找到合适自己的事,并积极地发挥专长,成为行业的能手,是高效能人士应当努力追求的一个目标把握关键细节精细化管理时代已经到来,一个人要成为一名高效能人士,必须养成重视细节的习惯做好小事情既是一种认真的工作态度,也是一种科学的工作精神一个连小事都做不好的人,绝不可能成为一名高效能人士不为小事困扰我们通常都能够面对生活中出现的危机,但却常常被一些小事搞得垂头丧气,整天心情不快,精神忧闷紧张。一名高效能人士应当及时摆脱小事困扰,积极地面对工作和生活。专注目标美国明尼苏达矿业制造公司3M的口号是写出两个以上的目标就等于没有目标这句话不仅适用于公司经营,对个人工作也有指导作用。有效沟通人与人之间的交往需要沟通,在公司,无论是员工于员工员工于上司员工与客户之间都需要沟通良好的沟通能力是工作中不可缺小的,一个高效能人士绝不会是一个性格孤僻的人,相反他应当是一个能设身处地为别人着想充分理解对方能够与他人进行桌有成效的沟通的人。及时化解人际关系矛盾与人际交往是一种艺术,如果你曾为办公室人际关系的难题而苦恼,无法忍受主管的反复无常,看不惯主管的假公济私,那么你要尝试学习如何与不同的人相处,提高自己化解人际矛盾的能力。积极倾听西方有句谚语说“上帝给我们两只耳朵,却只给了一张嘴巴。”其用意也是要我们小説多听。善于倾听,是一个高效能人士的一项最基本的素质。保持身体健康充沛的体力和精力是成就伟大事业的先决条件。保持身体健康,远离亚健康是每一名高效能人士必须遵守的铁律。杜绝坏的生活习惯习惯有好有坏。好的习惯是你的朋友,他会帮助你成功。一位哲人曾经説过“好习惯是一个人在社交场合中所能穿着最佳服饰。”而坏习惯则是你的敌人,他只会让你难堪、丢丑、添麻烦、损坏健康或事业失败。释放自己的忧虑孤独和忧虑是现代人的通病。在纷繁复杂的现代社会,只有保持内心平静的人,才能保证身体健康和高效能的工作。合理应对压力身体是革命的本钱,状态是成功的基础。健康,尤其是心理健康,已成为职场人士和企业持续发展的必备保障。学会正确地应对压力就成了高效能人士必备的一项习惯。掌握工作与生活的平衡真正的高效能人士都不是工作狂,他们善于掌握工作与生活平衡。工作压力会给我们的工作带来种种不良的影响,形成工作狂或者完美主义等错误的工作习惯,这会大大地降低一个人的工作绩效。及时和同事及上下级交流工作正确处理自己与上下级各类同事的关系,及时和同事、上下级交流工作,是高效能人士的一项重要习惯。做到上下逢源,正确处理“对上沟通”,与同事保持良好的互动交流是我们提高工作效能的一个关键。注重准备工作一个善于做准备的人,是距离成功最近的人。一个缺乏准备的员工一定是一个差错不断的人,纵然有超强的能力,千载难逢的机会,也不能保证获得成功。守时如果你想成为一名真正的高效能人士,就必须认清时间的价值,认真计划,准时做每一件事。这是每一个人只要肯做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医按摩养生师承合同
- 拆除工程合同履行及施工许可证办理承包合同范本
- 茶叶电商平台入驻与营销合作合同
- 吞咽治疗护理
- 房产代持协议书(婚姻财产分割版)
- 和人有关的课件
- 撤资协议书标准模板
- 车贷抵押担保业务专属合同模板
- 城市出租车经营权承包合作协议范本
- 高端汽车定制生产与售后服务协议
- 机化性肺炎治疗方案
- 医院用电安全知识培训
- 世界各国及其首都英文译名Excel
- GB/T 44289-2024农村公共法律服务基本规范
- GB/T 30819-2024机器人用谐波齿轮减速器
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务1)试题及答案
- 古诗词诵读《临安春雨初霁》课件+2023-2024学年统编版高中语文选择性必修下册
- 护理核心制度抢救制度
- 广东省东莞市(2024年-2025年小学三年级语文)人教版期末考试(下学期)试卷(含答案)
- 电子化学品工厂设计规范(征求意见稿)
- ISOIEC38507-2022信息技术-IT治理-组织使用人工智能的治理影响(中文版-雷泽佳译2024)
评论
0/150
提交评论