




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
M.J.RoemerC.HongS.H.HeslerStressTechnologyInc.,1800Brighton-HenriettaTownLineRd.,Rochester,NY14623MachineHealthMonitoringandLifeManagementUsingFinite-Element-BasedNeuralNetworksThispaperdemonstratesanovelapproachtocondition-basedhealthmonitoringforrotatingmachineryusingrecentadvancesinneuralnetworktechnologyandrotordynamic,finite-elementmodeling.Adesktoprotordemonstrationrigwasusedasaproofofconcepttool.Theapproachintegratesmachinerysensormeasurementswithdetailed,rotordynamic,finite-elementmodelsthroughaneuralnetworkthatisspecificallytrainedtorespondtothemachinebeingmonitored.Theadvantageofthisapproachovercurrentmethodsliesintheuseofanadvancedneuralnetwork.Theneuralnetworkistrainedtocontaintheknowledgeofadetailedfinite-elementmodelwhoseresultsareintegratedwithsystemmeasurementstoproduceaccuratemachinefaultdiagnosticsandcomponentstresspredictions.Thistechniquetakesadvantageofrecentadvancesinneuralnetworktechnologythatenablereal-timemachinerydiagnosticsandcomponentstresspredictiontobeperformedonaPCwiththeaccuracyoffinite-elementanalysis.Theavailabilityofthereal-time,finite-element-basedknowledgeonrotatingelementsallowsforreal-timecomponentlifepredictionaswellasaccurateandfastfaultdiagnosis.IntroductionMaximizingoperatinglifeandavailabilityofallcriticalcomponentsonrotatingmachinery,whileminimizingunplannedmaintenancedowntimeandtheriskofcatastrophicfailure,isacommongoalwithinallindustry.Thispaperdemonstratesafiniteelementbasedneuralsystemforimprovingthepresentstateoftheartinmachineryhealthmonitoringbyincreasingtheeffectivenessofstructuralcomponentdiagnosticsandmonitoring.Inparticular,neuralnetworkclassifiersweredevelopedthatoperateasahubforinformationgatheringandservedtomakeinformeddecisionsonarotorsystemshealthusingexperimentalandanalyticaldata.Thenetworkobservesthebehavioroftherotorsystembeingmonitoredtodiagnosestructuralfaultsandpredictcomponentstressesfromavarietyofpotentialfailuresources.Adesktopdemonstrationrotorwasusedasaproofconcepttool.Sensorsonthedemonstrationrigmeasurevibrationamplitudeandphaseatappropriatelocationsthroughouttherotorsystem.Fromthesemeasurements,theneuralsystemwilldiagnosefaultsandpredictrotatingmembercomponentstressesbywayofaneuralnetworktrainedextensivelyfromadetailed,rotordynamics,finite-elementmodel(FEM).Currently,commerciallyavailableexpertsystemsusedforconditionmonitoringuseonlymeasuredsystemdata,withnoknowledgeofrotatingcomponentstresses.Withoutthesestressdata,calculatingremainingcomponentlifedirectlywouldbeverydifficult.Theminiaturizedrotorrigdemonstrateshowtheneuralsystemcanbeusedtoobtainbothreal-time,finite-elementmodelresultsandmachinefaultdiagnostics.Thefinite-elementmodelcapabilityisdemonstratedbyestimatingthedynamicstressesontherotatingshaftandreactionforcesonthebearings.Thediagnosisabilityofthenetworkisillustratedbypredictingthelocation,magnitude,andphaseofdiskunbalances,amountofmisalignment,degreeofrotorrubormechanicallooseness,andbearingclearanceproblems.ThedynamicstressestimationandContributedbytheInternationalGasTurbineInstituteandpresentedatthe40thInternationalGasTurbineandAeroengineCongressandExhibition,Houston,Texas,June5-8,1995.ManuscriptreceivedbytheInternationalGasTurbineInstituteFebruary27,1995.PaperNo.95-GT-243.AssociateTechnicalEditor:C.J.Russo.structuraldiagnosesarebothperformedfromthevibrationmeasurementstakenfromthebearinglocations.Thispaperalsoshowstheabilityofthenetworktopredictthenonlineardynamicstressesintheshaft,whilesimultaneouslypredictingmechanicalfaults.RotorDemonstrationRigandMeasurementProcessingRotorSystemConfiguration.Adesktoprotorrigwasconstructedtodemonstratetheconceptsproposedinthispaperonactualhardware.Thedemonstrationrigwasdesignedtobeversatileenoughtoduplicatevariousvibration-producingphenomenafoundinalltypesofrotatingsystems.Manydifferenttypesofvibration-relatedcharacteristicswerecreatedandmeasuredbychangingrotorspeed,degreeofunbalance,degreeofmisalignment,shaftbow,shaftrub,androtorbearingclearances.Theresultingdynamiccharacteristicsaremeasuredwithproximityprobesand/oraccelerometersandareprocessedwithamultichanneldynamicsignalanalyzer.TherotorconfigurationstudiedinthispaperisshowninFig.1.Therotorsetupconsistsofthefollowingcomponents:1JQHPelectricmotor.2Flexiblerubbercoupling.3Rigidsteelcoupling(user-controlledsourceofshaftmisalignment)43ballbearingsand3journalbearings.52rotatingdiskswithbalanceweightholes.6gin.diameterand25in.-longsteelshaft.7Motorspeedcontrollerwithclosed-loopfeedback.8Variousproximityprobesandaccelerometers.9Fixturingtoproviderotorpreloads,rotorrub,andmechanicalloosenessconditions.Tworollerbearingssupportthemotorarmature,whilefouroil-impregnatedbronzesleevebearingsarepositionedbetweenthevariouscouplingsanddisks.Asolid36in.aluminumbasewithadjustablebearingpedestallocationsandrubberisolationfeetprovidesufficientrigiditytotherotorconfiguration.Motorspeedcontrolismaintainedwithaproportionalspeedfeedback830/Vol.118,OCTOBER1996TransactionsoftheASMECopyright1996byASMEDownloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmMOTORRIGIDCOUPFLEXCOUPBRG3Fig.1Rotordemonstrationrigalgorithm,withspeedsensedbyadedicatedproximityprobesandtoothedwheel.Therotorwasinitiallybalancedwithin0.05milsintwoplanesbeforeanymeasurementsweretaken.Aspeedrun-uptestwasperformedtoexperimentallydeterminetherotorscriticalspeeds.Themeasuredrotorresponsefrom0to100HzisgiveninFig.2.Thefirstresonantrotormodewasidentifiedatapproximately80Hzor4800rpm.Therotorwasruncontinuouslyat40Hzinabalancedconditiontodeterminethesensitivityoftherotortochangingconditions.DataAcquisitionandDatabaseDevelopment.Vibrationmeasurementsobtainedfromproximityprobesandaccelerome-tersweresignalconditionedandthenprocessedbyanOno-SokkiCF6400,four-channel,digitalsignalanalyzer.Themeasuredfrequencyresponseswerethentransferredtoapersonalcomputerwherethepertinent,per-revmagnitudeandphasereadingsweredetermined.Note,theinputparameterstotheneuralnetworkclassifiersweremagnitude(mils)andphase(degrees)oftheIXperrevrotorspeedatalltransducerlocations.Seededfaultswereintroducedintotherotordemonstrationsystembyapplyingmassunbalancestothedisks,misalignmentacrosstherigidcoupling,looseningthebearingpedestals,andinstallingprewornbearings.Undereachoftheseconditions,measurementswereobtainedfromeachoffourproximityprobestodeterminethemagnitudeandphaseofeachtransducerwithrespecttothereferencekeyphaser.Thespecificmagnitudeandphasemeasurementswerethenloggedintoadatabasewithspecificinput-outputpairsthatareusedintheneuralnetworktrainingprocedure.Alistoftheinput-outputpairsthatareincludedinthedatabaseisgivenbelow.RotordynamicsFiniteElementModelAdetailedmodeloftherotordemonstrationsystemwasdevelopedusingadedicatedfiniteelementrotorprogramdevelopedatSTIcalledRDA(RotorDynamicsAnalysis).Thiscomputerprogramwasusedtosimulaterotoroperationandtotraintheneuralnetworkclassifiers.RDAisfinite-elementbased,andcontainsanarrayofpreprocessorroutinestofacilitategrid0iiiiiiiiiiiiiiiiiiiiiiiiiiiii61319.527.6344248.664.662.671788886Frequency(Hz)OptionsHelpTT1HiiimiiiHiliii(;t*Mw3$*d*a$mHxtemw&i4ltt*Mtrifwp*yvfflwvHMinmaHiUlms-RadialOTangentIolOfWalOErantIsometricOBockIsonetrlcOGeneraIRotate=r-=r-#Badlal|ijjjOlong.Incr,Peg,OBXIOIamnFig.2Rotorresponse0-100HzFig.3Calculatedfirstcriticalrotormodegeneration.Thefinite-elementbasedmodelpredictsoverallrotorvibratorycharacteristicsaswellaslocalvibratorystresslevels.Thegeneralgeometryoftherotorisprescribedtothecodeattheoutset,toallowselectionofthepreprocessor(andinputinstructions)tobemade.Theaddedvalueofhavingafinite-element-model-baseddiagnosticsystemisthatitprovidesaveryaccuratepictureoftherotorstressdistributionandreactionforces.Thesestressesandforcesarethecausesofmanyofthecomponentfailuresintherotor,bearings,seals,etc.Withtherotatingshaftcomponentstressespredicted,anautomatedlifeanalysisalgorithmwillbeabletodeterminewhattheexpectedcomponentlifewillbewithanydamagecondition.Thefiniteelementmodelofthedemonstrationrotorconfigurationwasdevelopedandcorrelatedtotheexperimentalresults.Themodelwasusedasanadditionalsourceofinformationforenhancedtrainingoftheneuralnetwork.Inparticular,thenetworkwastrainedfromthemodeltodeterminedynamicstressesandforcesincriticalmechanicalcomponentssothatitwouldbeabletocalculateremainingcomponentlifeasadiagnosticoutput.Figure3illustratesthefirstcriticalmodeassociatedwiththefiniteelementmodel.Notethecloseagreementbetweenthemeasuredandcalculatedfirstcriticalmodes.Thismodelwasusedforcalculatingdynamicstressesintheshaftandbearingreactionforcesundervariousoperatingconditionsincludingunbalancesandmisalignment.NeuralNetworkDescriptionandDevelopmentTheneuralnetworkarchitecturesdevelopedinthispaperservedasahubforinformationgathering/processingandresultedininformeddiagnosesoftheconditionofthedemorotorrigusingacombinationofexperimentalandanalyticaldata.Theinternalinterconnectionsoftheproposedneuralnetworkarchitecturesweredevelopedbasedontheamountofdatatobeprocessedbytheneuralnet.Thisisanalogoustomodelingthenumberofneuronsinthesystemsbraintobeutilizedforaparticularnetwork.Themoreneuronsusedintheentirenetwork,thelargerthesolutionspacewillbeforgeneralizingasystemsbehavior.Severalmultilayer,feedforwardnetworksweredevelopedforthisproject,utilizingthebackpropagationalgorithmforminimizingtheerrorsignals.Twoprincipalneuralnetworkarchitecturesweredevelopedinordertoexaminethesensitivityandaccuracyofdifferentnetworkdesignphilosophies.SingleNetworkArchitecture.Thesinglenetworkconfigurationdevelopedfirstutilizedfourbearingvibrationinputmeasurements(includingmagnitudeandphase)andfunctionalJournalofEngineeringforGasTurbinesandPowerOCTOBER1996,Vol.118/831Downloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmSBIRNETWORKCONFIGURATIONBRO1MAC.8RGIPHASEBRG2MAG.BRO2PHASEBRO3MAG.8RG3PHASEBRG4MAG.BRG4PHASBUNBALANCEDISKI(MOOH)UNBALANCEMAOUNBALANCEPHASE(dffurtti)UNBALANCEDISKI(0-1Wi%|UNBAUNCEMAG.(grnrnj)UNBALANCEPHASE(dqjrwi)MISALIGNMENT(u-100%)OFFSETAMOUNT(miti)BENDINGSTRESSDISKI(pli)BENDINGSTRESSDISK2|pu)RADIALFORCEBRGI(It*|RADIALFORCEBRG2(lb)IBEARINGWEAR(0-lOOtt)MECHANICALLOSSENESS(0-IQOWIFig.4Singleneuralnetworkarchitectureenhancementsofthesefoursensorinputstoyield24inputnodestothenetwork.Adiscussiononthepracticeofusingfunctionalenhancementstoimprovetrainingaccuraciesandtimingisgivenlater.Onehiddenlayer,consistingof24nodes,isusedtoincreasetheflexibilityofthenetwork.Hiddenlayers,whenusedproperly,canprovidemoreaccuratecorrelationbetweencomplex,linear,andnonlineartrainingpatterns.Theoutputlayerofthenetworkconsistsof14nodes.Figure4isarepresentationofthistypeofsingleneuralnetworkarchitecturewithitscorrespondinginput/outputparameters.Note,duetothespacelimitationassociatedwiththefigure,the24inputandhiddenlayernodeswerereducedtofitonthepage.Thefirstsixnodesoftheoutputlayerarededicatedtodetermining:(1)theprobabilitythatanunbalancemayexist,(2)themagnitudeoftheidentifiedunbalance,and(3)thephaselocationoftheunbalanceontheout-of-balancedisk.Thenexttwooutputnodesdetermineifamisalignmentexistsacrosstherigidcoupling.Theprobabilityofhavingamisalignmentisdeterminedalongwiththemagnitudeoftheoffsetinmils.Fouroutputnodesofthenetworkarededicatedtovirtualsensing.Virtualsensingreferstoindirectlymeasuringaparametersuchasshaftstressorbearingforcesbymatchingpatternsofdirectlysenseddata(suchasbearingdisplacement)withafiniteelementmodeltoyieldanaccuratemeasurementoftheunmeasuredparameter.Forthedemonstrationrotorsystem,theshaftbendingstressesandbearingforcesarecalculatedusingadetailedfinite-elementmodeloftherotorforparticularrotorconditions.Theneuralnetworkisthentrainedtorecognizethesensedpatternsandrelatethemtothevaluescalculatedfromthemodel.Theresultisaneuralnetwork(trainedfrommeasurementsandFEmodel)thatiscapableofvirtuallysensingstressesandreactionforcesonparticularcomponentsinrealtimewithoutactuallyhavinginstalledstraingagesorforcetransducersonboard.Thelasttwonodesoftheoutputlayerdiagnosetheprobabilityofrotorruborbearingclearanceproblemsandstructuralsupportlooseness.DividedNetworkArchitecture.Adivided,multilayernetworkarchitecturewasdevelopedthatusedthesamefourbearingvibrationinputmeasurements(includingmagnitudeandphase)asthepreviousarchitecture.However,inthiscase,thenewnetworkconfigurationwasbrokenupintosmaller,morespecializedclassifiers.AnillustrationofthisnetworkarchitectureisgiveninFig.5.Thefirstsectionofthisnewnetworkconfigurationdiagnosesthegrossfaultconditionaseither:(1)anunbalanceondiskNo.1,(2)anunbalanceondiskNo.2,(3)amisalignmentacrosstherigidcoupling,(4)abearingwearorclearanceproblem,or(5)astructural/mechanicalloosenessproblem.Thesecondlayerutilizesthesamebearingvibrationinputstodeterminespecificlevelsofunbalanceand/ormisalignmentabouttheparticularlyidentifiedfaultaswellasgiveimportantvirtualsensinginformationaboutshaftstressesandbearingreactionforces.ThetopnetworkarchitectureinthesecondlayerdeterminesthefaultspecificswithrespecttoadiskNo.1unbalance.Theseverityoftheunbalanceisdiagnosedinthefirstoutputnode.Theseverityoutputvaluesrangefrom0of1,with1representingthemostseverecondition.Thesecondandthirdoutputnodesdeterminethemagnitudeandphaseoftheunbalanceconditionsothatcorrectiveactioncanbetakenatanytime.Theseverityoftheunbalancediagnosisiscontinuouslymonitoredandtrackedtoidentifyaworseningcondition.ThenetworkarchitectureinthesecondlayerdiagnosesanunbalanceconditionondiskNo.2.TheoutputnodespecificsareidenticaltothediagnosisnetworkassociatedwithdiskNo.1.Athirdnetworkinthesecondlayerisusedtodeterminetheseverityandmagnitudeofanymisalignmentacrossthecoupling.Severityvaluesrangebetween0and1,asinthepreviouscases,whilethemisalignmentoffsetamountisreportedinmils.Thefinalnetworkinthesecondlayerisdedicatedtovirtuallysensingmaximumshaftstressesandbearingreactionforcesfromthevibrationpatternsrecognizedatthesensorlocations.NeuralNetworkTrainingandConsultingTrainingofaneuralnetworkinvolvestheprocessofevaluatingtheweightsandthresholdsofthenumerousinterconnectionsbetweentheinputandoutputlayers.Thetrainingoftheneuralnetworkswasconductedutilizingbothunsupervisedandsupervisedprocedures.Theunsupervisedtrainingwasusedtogroupsimilarinputpatternstofacilitateprocessingofthelargenumberoftrainingpatternsused.ThesupervisedtrainingtechniqueisNEURALNETWORKCONFIGURATIONSUNBALANCEROW1SEVERITYMAGNITUDEPHASEVIRTUALSENSORSSHAFTSTRESSDISK1SHAFTSTRESSDISK2BEARING#1FORCEBEARINGnFORCEFig.5Dividedneuralnetworkarchitecture832/Vol.118,OCTOBER1996TransactionsoftheASMEDownloaded19Mar2009to43.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmusedforspecifyingwhattargetoutputsshouldresultfromaninputpattern.Theneuralnetworkvariables(weightsandthresholds)arethenself-adjustedtogeneratethattargetoutput.Thecombinationofthesetwotrainingprocedureswasutilizedduringthisprojectinordertoachievethedesirablenetworkaccuracy.Oncetheinternalstructuresofthenetworkswereconstructed,theyweretrainedbasedonexperimentalcasehistoriesandanalyticallyderivedinput/outputpairsderivedfromtherotordynamicscomputermodel.Developmentofthisdatabasecontainingtheneuralnetworkinput/outputtrainingpatternsrepresentedamajorportionofthispaperseffort.UnsupervisedTraining.Givenasetoftrainingpatterns,anunsupervisedlearningalgorithmwillself-organizetheinputpatternsintogroupsofpatternscalledclusters.BasedonaEuclideandistancesimilaritymeasure,alargenumberofpatternscanbeseparatedintoseveralclusters.Duringthetrainingprocess,networkweightsandthresholdsaremodifiedandclustercentersaredetermined.Thenumberofclustersformediscontrolledbyadjustingtheclustercenterradiusvalue.Afterthetrainingprocessisfinished,thenetworkcanbeconsultedwitheitherknownorunknowninputpatterns.SupervisedTraining.Supervisedlearning,asopposedtounsupervisedlearning,utilizespairsofassociatedinput/outputpatterns.ThistechniqueiscommonlyimplementedusingaGeneralizedDeltaRulenetworkarchitecturewithbackpropagationoferror.Duringthisprocedure,thenetworkarchitectureisspecifiedintermsofthenumberofinputandoutputnodes,aswellashiddenlayernodes.Thetrainingsetisthenusedtospecifywhattargetoutputsshouldresultfromaninputpattern,andthenetworkautomaticallylearnsthesetofparameters(weightsandthresholds)thatwillgeneratethisdesiredoutput.Inthislearningprocedure,thenetworklearnsasinglesetofnetworkparametersthatsatisfiesallthetraininginput/outputpairs.Thelearningisnotperfect,butisoptimumonthebasisoftheleastmeansquareerror.Intheconsultingmode,thenetworkisabletogeneralizeandgenerateappropriateoutputpatternsforanyinputpatternappliedtothenetwork.Thisattributeistheprincipaladvantagetoutilizingneuralnetworksinconditionmonitoringapplications.AnadditionalmathematicalenhancementusedinPhaseIthathelpsthenetworkarchitecturereducetheerrorassociatedwiththenumerousinput/outputpairsiscalledtheFunctionalLink.Inthisapproach,theinputpatternsareexpandedtoincludehigherordertermsassociatedwiththeoriginalinputvalues.Althoughthisenhancementisntalwaysnecessary,itoftenreducestheneedforhiddenlayersandresultsindramaticallyreducedtrainingtimes.SpecificNetworkTrainingandConsulting.Bothnetworkarchitecturesweretrainedwiththesame232input/outputtrainingpatternsdevisedfrombothexperimentalmeasurementsandthefiniteelementmodelanalysis.Thetrainingpatternsofthenetworkdatabasefocusedondiagnosingunbalanceconditions,misalignment,bearingreactionforces,andshaftstresses.Asanexample,experimentaldatawerecollectedfromtherigtotraintheneuralnetworktodistinguishthedifferencesbetweenmisalignmentandanunbalancecondition.Bothoftheseconditionsexhibitsimilarone/revvibrationcharacteristics.Phaseanglemeasurementswereobviouslyveryimportantforthenetworktomakethisdistinction.Amajorportionofthetrainingsetswerederivedinordertorecognizethedifferencesbetweensmallchangesinmagnitudeandphaseoftheapplied(seeded)unbalanceforces.Duetothefactthatthekeyphasersignalwasonlyaccuratetowithin10deg,changesinunbalanceforcesappliedevery22.5degwereusedasthebaseresolutionfromwhichtoidentifythelocationsoftheunbalance.Duetothefactthatunbalancemagnitudechangesof1.2g-in.(0.0425oz-in.)onlyproducedaminimalvibrationamplitudechangeof0.2mils,thisvaluewasusedasthebestresolutionpossiblewithinthepracticalconstraintsimposedbytherotorsystem.Therotordynamicsfinite-elementmodelwasexercisedextensivelywithnumerousunbalanceforceandshaftmisalignmentconditions.Theresultsfromeachrunofthefiniteelementmodel(takingapproximatelyhoureach)yieldedsteady-stateshaftbendingstressesandbearingreactionforcesforeachoftheseforcingconditions.Theseresultswerethenusedinconjunctionwiththemeasureddatatobuildthetrainingpatterndatabase.ComponentLifeAccumulationAfatiguelifealgorithmwasdevelopedthatutilizedthevirtuallysensedshaftstressesandbearingreactionforcesasabasisforcomputingfatigueinitiationlife.Thealgorithmestimatestheamountoftimetocrackinitiation,withcrackpropagationnotbeingconsidered.Neubersruleisusedtocomputethetruestressandstraininthecrackinitiationregion.Morrowsmethodisusedtoincorporatethemeanstresseffectsinthelifecalculations,whicharebasedonstrainamplitudeandthenumberofreversals.Minerslawcomputesthecumulativefatiguedamage.Strain-LifeEquation.Thelocalstrainapproachwasusedto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房产中介与房地产开发商合作开发协议范本
- 2025二手汽车二手买卖合同协议书1
- 2025版企业危机公关与媒体应对内训服务合同模板
- 2025版石灰石行业节能减排技术改造合同
- 2025版高科技企业实习生创新项目合作合同
- 2025年度物联网设备软件测试与功能实现合同范本
- 2025年沙发企业品牌形象设计合同下载
- 2025年度生鲜产品市场推广与销售渠道建设合同
- 贵州省思南县2025年上半年事业单位公开遴选试题含答案分析
- 医疗健康产业市场前瞻报告
- 主动脉夹层临床医学专业教学系列课件讲解
- 天津市河北区2024-2025学年九年级上学期12月月考数学试题(含答案)
- 五社联动推进基层治理现代化
- 初中历史新教材培训心得体会
- 车间5S现场管理标准图
- 《高压开关柜》课件
- 装配钳工高级试题(附答案)
- 【数学】一元一次方程的应用(第2课时)课件 2024-2025学年北师大版七年级数学上册
- 甘肃省行政执法人员综合法律知识考试试题库
- GB/T 44739-2024枸杞及其制品中枸杞多糖的测定离子色谱法
- DB41T 1176-2015 危险化学品重大危险源安全评估导则
评论
0/150
提交评论