




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UncertaintypropagationincalibrationofparallelkinematicmachinesBernhardJokielJr.a,JohnC.Ziegertb,LotharBiegcaSandiaNationalLaboratories,Albuquerque,NM87185-0958,USAbUniversityofFloridaMachineToolResearchCenter,237MEB,Gainesville,FL32611,USAcSandiaNationalLaboratories,1Albuquerque,NM87185-0958,USAAbstractThispaperoutlinesindetailamethodfordeterminingtheuncertaintypresentinthekinematicparameters(jointlocations,initialstrutlengths,andspindlelocationandorientation)forparallelkinematicdevicesaftercalibration.TheuncertaintyestimationmethodusingMonteCarlosimulationswasappliedtoasequentialmethodfordeterminingthekinematicparametersoffullyassembledHexelTornado2000(a63Stewartplatform)millingmachine.ResultsfortheuncertaintypresentinthekinematicparametersofaHexelTornado2000millingKeywords:Stewartplatform;Calibration;Kinematicparameters;Uncertainty.1.IntroductionOverthelastdecade,multi-axismachinetoolsbasedonparallelkinematicmechanisms(PKMs)havebeendevel-opedandmarketedworldwideasalternativestotraditionalserialstacked-slide,orthogonalmachinearchitectures.ThegeneraldifferencebetweenPKMandorthogonalserialmechanismsisthearrangementoftheactuators.Inorthog-onalserialmechanisms,individualactuatorsresponsibleformotioninindividualCartesiandegreesoffreedom(DOF)arejoinedendtoendinaserialchainconnectingthestationarygroundframetothemovingframe.InPKMarchitectures,individualactuatorsarenottypicallyarrangedtoindependentlycontrolasingleCartesianDOF.Insteadtheactuatorsarearrangedsothateachactuatorisconnectedbetweenthestationarygroundframeandthemovingframe,sothatacombinationofactuatormotionscontrolsthemo-tionofthemovingframeinCartesianspace.ApopulartypeofPKMistheStewartplatform(Figure1).TheStewartplatformconnectsamoveableplatformtoastationarygroundframebysixextensiblelinksorstruts,allowingforcontrolledmotionoftheplatforminallsixDOF.GenerallyforPKMmachines,theCartesianpositionandorientationofthetoolpointcarriedontheplatformisobtainedfromakinematicmodeloftheparticularmachine.Accuratepositioningofthesemachinesreliesontheaccu-rateknowledgeoftheparametersofthekinematicmodeluniquetotheparticularmachine.Theparametersinthekinematicmodelincludethespatiallocationsofthejointcentersonthemachinebaseandmovingplatform,theinitialstrutlengths,andthestrutdisplacements.Thestrutdisplace-mentsarereadilyobtainedfromsensorsonthemachine.However,theremainingkinematicparameters(jointcenterlocations,andinitialstrutlengths)aredifficulttodeterminewhenthesemachinesareintheirfullyassembledstate.Thesizeandcomplexityofthesemachinegenerallymakesitdifficultandsomewhatundesirabletodeterminetheremain-ingkinematicparametersbydirectinspectionsuchasinacoordinatemeasuringmachine.InorderforPKMstobeusefulforprecisionpositioningapplications,techniquesmustbedevelopedtoquicklycalibratethemachinebydeterminingthekinematicparameterswithoutdisassemblyofthemachine.Anumberofauthorshavereportedtech-niquesforcalibrationofPKMs.Soons1,2,Masory,3,Zhuanget.al.4,5,Ropponen6Inanotherpaper7,theauthorshavereportedonworkrecentlycompletedbytheUniversityofFloridaandSandiaNationalLaboratoriesoncalibrationofPKMs,whichdescribesanewtechniquetosequentiallydeterminethekinematicparametersofanas-sembledparallelkinematicdevice.CalibrationofPKMs,oranyothertypeofmachine,beginsbycollectingsetsofmeasurements.Thecollectedmeasurementdataissuppliedtoanalgorithm,whichcom-putesthemodelparameters.Aswithanymetrologytask,1SandiaisamultiprogramlaboratoryoperatedbySandiaCorporation,aLockheedMartinCompany,fortheUnitedStatesDepartmentofEnergyunderContractDE-AC0494AL85000.PrecisionEngineeringJournaloftheInternationalSocietiesforPrecisionEngineeringandNanotechnology25(2001)4855machineaftercalibrationusingaSMX4,000lasertrackerareshown.thereisuncertaintypresentinthecollectedmeasurementdata.Theuncertaintypresentinthemeasurementdatawillpropagatethroughtheparameteridentificationalgorithmandresultinerrorsinthecomputedkinematicparameters.Theerrorsintherecoveredkinematicparameterswillthencreatepositioningerrorswhenthekinematicmodelisusedformachinecontrol.ThepurposeofthispaperistoexploretheissueofpropagationofuncertaintyinthecalibrationofPKMdevices.Wewilldescribeamethodologyforevalu-atingtheuncertaintyintherecoveredparameters,andtheresultingerrorboundsinmachinepositioning.Wewilldemonstratethismethodologyforthenewcalibrationmethodwehavedevelopedandreportedinanotherpaper7.Thispaperisorganizedinthefollowingmanner.Section2describesthemethodologyforevaluatinguncertaintypropagationinPKMcalibration.Section3containsabriefsynopsisofthecalibrationmethodologyusedinthiswork.InSection4,theerrorbudgetforthecalibrationmeasure-mentsisdeveloped.Section5givestheresultsoftheun-certaintypropagationsimulation.Section6comparesthesimulationresultstoexperimentalresultsperformedonthemachine.2.MethodologyforevaluatinguncertaintypropagationInanymachinecalibrationtask,uncertaintyisintroducedintwoways.First,thecalibrationmethodinvolvesperform-ingmeasurementswithaspecifiedsetofinstruments.Thesemeasurementinstrumentswillhaveanassociateduncer-taintyintheiroutput,whichisafunctionofthephysicalprincipalsandconstructionoftheinstrumentsthemselves,aswellastheenvironmentinwhichthemeasurementstakeplace.Inconjunctionwiththeuncertaintyassociatedwiththeexternalcalibrationinstruments,theremaybeadditionaluncertaintyintroducedbythemachineitself.ThefeedbackdevicesonthestrutsofPKMmachinestypicallycannotdirectlymeasuretheabsolutedistancebetweencorrespond-ingpairsofjointcenters,onlythechangeinlengthofthestrutfromsome“home”positionatwhichtheabsolutejointcenterdistanceisassumedtobeknown.Changesinthethermalstateofthemachinemaycausethisassumedvaluetobeincorrectand/ortofluctuateovertime.Thestrutdisplacementfeedbackdevicesalsohaveafiniteresolutionandsomeuncertaintyassociatedwiththeiroutput.Geomet-ricaleffectsnotincludedinthekinematicmodel,suchasnon-sphericaljointmotion,alsocreateaneffectivestrutlengtherrorwhichisnotsensedbythestrutfeedbackdevices.Therefore,themachinesrepeatabilityandabsolutepositioningaccuracyduringthecalibrationmeasurementscontributestotheoveralluncertaintyofthebasicdatausedbythecalibrationalgorithm.Theuncertaintiespresentintheexternalmeasurementinstrumentcombinewiththeuncertaintiesinthemachinemotionstocreateerrorsinthedatausedbythecalibrationalgorithmtocomputetheparametersofthemachineski-nematicmodel.Sinceerrorispresentinthecollecteddata,therewillbeerrorpresentinthecomputedmodelparame-tersaswell.Sincethesecomputedmodelparametersdonotidenticallymatchtheactualphysicalparametersoftherealmachine,positioningerrorswillresultwhentherecoveredparametersareusedduringpositionalcontrolofthema-chine.Thesepositioningerrorsduetoincorrectparameter-izationofthemodelwillbecompoundedwiththeuncer-taintiesinherenttothemachineitself,resultinginthefinalvolumetricaccuracyofthemachine.Thisisanimportantpointthatshouldnotbeoverlooked.Theuncertaintiesarisingfromthemachineitself(i.e.,re-peatability,sensorresolution,unmodeledthermalandgeo-metriceffects)affecttheoverallpositioningperformanceofthemachinetwice.First,theyadduncertaintytothebasicmeasurementdatathatisusedbythecalibrationalgorithm.Second,afterthecalibrationiscomplete,andthenewlyparameterizedkinematicmodelisusedformachinecontrol,thesesamemachineuncertaintiesstillexistandcontributetopositioningerrors.WeproposethefollowingmethodologyforevaluationofuncertaintypropagationthroughthePKMcalibrationpro-cess:1.Constructanerrorbudgetforthemeasurementde-vicesusedduringcalibrationtopredicttheiruncer-taintycontributions.2.Constructanerrorbudgetforthemachineitselftoestimatethemagnitudeofstrutlengtherrorwhichcanoccurduetothermaleffects,sensorresolutionanduncertainty,non-sphericityofthejointmotions,andothereffectsinherenttotheparticularmachinewhichmaycausenon-repeatabilityofpositioning.3.Combinethesetwouncertaintysourcestoestimatetheoveralluncertaintypresentinthecollectedmea-surementdatausedbythecalibrationalgorithmtoobtainmodelparameters.Fig.1.A12-joint(six-six)Stewartplatformdevice.49B.Jokieletal./PrecisionEngineering25(2001)48554.Constructa“perfect”datasetfromthemachinemodel,whichassumesnouncertaintiesexistinthemeasuringinstrumentsormachine.5.PerformaMonteCarlosimulationofthecalibrationprocessbyrunningthecalibrationalgorithmmultipletimes,eachtimecorruptingthe“perfect”datasetwithrandomlygeneratederrorsassumingauniformdistri-butionovertheuncertaintyboundspredictedbythecombinederrorbudgetanalyses.6.Analyzethedistributionoferrorsinthemodelpa-rametersobtainedfromtheMonteCarlosimulation.7.Usingthemachinekinematicmodelwitheachsetofmodelparametersobtainedfromthecalibrationsim-ulation,simulatethemachinemotionsduringapar-ticularmachineaccuracyperformancetest(i.e.,-cir-cularballbartests,laserinterferometricdisplacementmeasurements,etc.),beingsuretoincludetheuncer-taintyassociatedwiththemachineitselfinthesimu-lation.8.Analyzethesimulatedperformancedata.Theresultsofthissimulationwillshowtherangeofresultsoneislikelytoachieveonthefinalmachineposi-tioningperformancetestsfromaparticularcalibrationpro-cedure.ThisprocedureisoutlinedintheflowchartinFigure2.Itisalsopossibletomodifythesesimulationstoexaminetheeffectofvariouscontributorstotheoverallpositioningperformanceofthemachine.Forexample,onemightas-sumethatthemachineitselfisperfecttodeterminehowuncertaintiesintheexternalcalibrationmeasurementinstru-mentscontributetomachinepositioningerrors.Conversely,onecanassumethattheexternalmeasurementsareperfectandexaminethepropagationofvarioussourcesofmachineerror,suchasthermaleffectsornon-sphericityofjointmotions,tothefinalpositioningaccuracyperformance.3.CalibrationmethodologysequentialdeterminationtechniqueTheapproachoutlinedinSection2wasusedtoevaluateuncertaintypropagationincalibrationofPKMdevicesforanewmethodforsequentialdeterminationofkinematicpa-rametersinPKMsdevelopedbytheauthorsandreportedelsewhere10.Asaconveniencetothereader,thismethodisbrieflydescribedhere.Theparameteridentificationmethodusesaspatialcoordinatemeasuringdevicesuchasalasertrackeroralaserballbar.Thecalibrationisper-formedinfoursteps:1.Locationofacentralreferenceframe(R)andthemachineframe(M).2.Identificationofthespatiallocationsofthejointscentersofrotation.3.Determinationofthespindleorientationandnoselocation.4.Determinationoftheinitialstrutlengths.3.1.LocatingthecentralreferenceandmachinereferenceframesIngeneral,severallocationsofthespatialcoordinate-measuringdevicemayberequiredtocompleteallofthenecessarymeasurements.Therefore,asingle,stablerefer-Fig.2.Uncertaintypropagationalgorithmflowchart.Fig.3.Locationsofcoordinatereferenceframesusedduringcalibration.50B.Jokieletal./PrecisionEngineering25(2001)4855enceframe,R,isnecessarytowhichallofthecoordinatedatacollectedinvariousframesmaybetransformed(Figure3).TheRframeconsistsofthreegaugepointssecuredtotheworktable.Utilizingthespatialcoordinatemeasuringde-vice,thelocationsoftheRgaugepointsaremeasuredrelativetothemeasuringdevicescoordinatesystem,andthehomogeneouscoordinatetransformation(HTM)be-tweenthemeasurementdevicescoordinatesystemandtheRframe(MeasTR)iscomputedusingthefollowingequa-tions.TheHTMbetweentheRsystemandmachinesreferenceframe(M)mayalsobedeterminedatthistime.Usingthespatialmeasurementdevice,theplaneoftheworktable,thedesiredlocationoftheX-axisandthemachineoriginaremeasured.Usingtheunitnormalvectorofthebest-fitplane,theunitvectoroftheX-axisdirectionvectorprojectedintothebest-fitplane,andthecoordinatesofthedesiredmachineoriginprojectedintothebest-fitplanetheHTMoftheMframerelativetothemeasure-mentdeviceframe,(MeasTM),isconstructed.TheHTMrelatingtheRandMframes(MTR)isthencalculatedbymatrixmultiplication.3.2.JointcenterlocationidentificationStewartplatformmachinesrequiretheuseofsphericalorHookejointstoconnectthestrutstothemachinebaseandtothemoveableplatform.Thesejointsallowthestrutendstorotateaboutfixedpointsonthemachinebaseandplatformasthemachinegeometrychanges.Ifastrutisheldatafixedlengthandrotatedaboutoneofitsjoints,allofthepointsonthelinkmovewithsphericalmotionaboutacommoncenterofrotation.Thisfactcanbeleveragedtodeterminethelocationofthejointscenterofrotation.Twogaugepointsareaffixedtoeithersideofonestrutsothatthegauge-pointcentersandthestrutcenterlinelieinthesameplane.Threegaugepointsareaffixedtotheplatform,whichdefineaplatformreferencecoordinatesystemPR.Theplatformisthencommandedtomovealonganarbi-trary,predeterminedpathdesignedtoholdthestrutinques-tionatanarbitraryfixedlength.Astheplatformmoves,thisfixed-lengthstrutrotatesaboutitsjointcenters,andpointsonthestruttraceasphericalpathinspace(Figure4).Atseveralloca
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生活中的小细节议论文5篇
- 养殖合作农业生产责任合同
- 填埋场污染隐患排查标准与实施流程
- 音乐创作理论知识与赏析题集
- 小学德育教育与家庭合作模式
- 数实产业融合与企业ESG表现的互动研究
- Python大数据分析与挖掘实战:微课版(第2版)课件 第9章 基于财务与交易数据的量化投资分析
- 酒店预订服务条款
- 构建可持续发展的县域普通高中教育保障体系
- 汽车行业试题汽车构造与维修知识测试卷
- 软件工程大作业样本
- 构网型逆变器技术综述
- 高层建筑施工进度计划表doc111
- 相机租赁合同书
- GB/T 31950-2023企业诚信管理体系要求
- 2022年福建省中考地理试卷及答案
- 输变电工程标准化施工作业卡变电工程
- 期权基础知识介绍课件
- 网络运维计算机管理论文(论文)
- 面试评分表(学生会)
- 小学语文教师选调进城考试试题4套(附答案)
评论
0/150
提交评论