数学决策在高一函数教学中的应用研究(硕士论文电子稿)_第1页
数学决策在高一函数教学中的应用研究(硕士论文电子稿)_第2页
数学决策在高一函数教学中的应用研究(硕士论文电子稿)_第3页
数学决策在高一函数教学中的应用研究(硕士论文电子稿)_第4页
数学决策在高一函数教学中的应用研究(硕士论文电子稿)_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学决策在高一函数教学中的应用研究目录中文摘要IABSTRACTII第一章问题的提出1一、问题提出的背景1二、数学决策教学的研究现状2三、本研究的问题及方法4第二章决策的教学模式与方法5一、有关决策概念的界定5二、基于决策的教学模式的构建13三、培养学生决策意识的方法16第三章数学决策在高中教学应用的调查研究21一、调查时间与对象21二、调查问题与方法21三、数据分析与结果22第四章数学决策在函数教学中的建议27一、适于数学决策的函数教学内容27二、数学决策在函数教学中的要求30第五章数学决策在函数教学中的应用32一、数学决策在手机套餐选择中的应用32二、数学决策在推导中的应用35C三、数学决策在的图像中的应用37SINYAWX四、数学决策在函数拟合中的应用39第六章教学实验43一、实验目的43二、实验假设43三、实验基本过程43四、实验结果的分析44五、实验结论及不足46附录47注释50参考文献52攻读教育硕士期间发表的论文53致谢54中文摘要决策是指人们在有限的时间内,为了达到一定的目标而从诸多方案中选择最佳或最满意方案并付诸实施的整个过程。在现代社会中,公民应该具有合理的决策能力。因此发展学生解决问题的决策能力是高中数学教学的重要目标之一,同时也是普通高中数学课程标准实验)的基本理念之一。但是在实际的数学教学中,对高中生决策能力的培养长期没有得到重视。远没有将其放在教学的高度,关注度不够。对于决策究竟应该如何来理解基于决策的数学教学应该是什么样的决策意识在教学中如何培养还缺少理论分析与实践探索。本论文采用理论与实践研究相结合的方式。首先介绍了问题的背景并对数学决策教学的研究现状进行梳理,提出了本研究的目的和研究方法。其次对决策的内涵、特征及其一般过程加以界定。从数学学科的特点出发,根据数学问题的类型将数学决策加以分类。对决策教学的内涵及其影响因素进行了分析,建立了以“问题引导,过程决策”的教学模式。提出了培养学生决策意识的方法决策树、头脑风暴法、一题多解。再次对高一新生决策意识的水平及学习数学的动机进行调查分析。提出了适宜数学决策的课程资源。通过数学决策在函数的教学中加以实际应用,对数学决策在函数中的教学进行了进一步的思考。最后通过教学实验,从整体上来看,数学决策教学充分关注了学生认知水平的差异,其内容具有决策情境性,在教学中能够使学生的自主性得以体现。为有效的提升学生的学习成绩、决策意识及学习数学的内部动机提供了基础。关键词决策;数学决策教学;决策意识;函数分类号G6336ABSTRACTTHEREFORETHEDEVELOPMENTOFSTUDENTSDECISIONMAKINGABILITYTOSOLVEPROBLEMSISANIMPORTANTGOALOFHIGHSCHOOLMATHEMATICSTEACHINGITISALSOONEOFTHEBASICCONCEPTSOF“HIGHSCHOOLMATHEMATICSCURRICULUMSTANDARDSEXPERIMENTAL”BUTINTHEACTUALMATHEMATICSTEACHING,THEDECISIONMAKINGABILITYOFHIGHSCHOOLSTUDENTSISNTTAKENSERIOUSLYWEHAVENTPAIDENOUGHATTENTIONTOITANDPUTITONTHEHEIGHTOFTEACHINGHOWSHOULDDECISIONMAKINGBEUNDERSTOODWHATSHOULDDECISIONMAKINGBASEDONMATHEMATICSTEACHINGBELIKEHOWSHOULDWEDEVELOPSTUDENTSDECISIONMAKINGABILITYINTEACHINGBECAUSEOFALACKOFTHEORETICALANALYSISANDPRACTICALEXPLORATION,THESEPROBLEMSHAVENTBEENSOLVEDFIRSTLY,BYCOMBININGTHEORYANDPRACTICE,THISPAPERINTRODUCESTHEBACKGROUNDANDCOMBSTHEPRESENTSITUATIONOFTHEDECISIONMAKINGRESEARCHOFMATHEMATICSANDPUTSFORWARDTHEAIMANDRESEARCHMETHODSOFTHEPRESENTSTUDYSECONDLY,THEPAPERDEFINESTHECONNOTATION,FEATURESANDGENERALPROCESSOFDECISIONMAKINGANDITALSOCLASSFIESMATHEMATICALDECISIONMAKINGACCORDINGTOTHECHARACTERISTICSOFMATHEMATICSANDTHETYPEOFMATHEMATICALPROBLEMSTHECONNATIONOFDECISIONMAKINGTEACHINGANDITSINFLUENTIALFACTORSAREANALYZEDINTHEPAPERSOTHATTHE“PROBLEMGUIDE,PROCESSDECISION”TEACHINGMODEISESTABLISHEDANDTHEWAYSOFDEVELOPINGSTUDENTSCONSCIOUSNESSOFDECISIONMAKINGARERAISEDDECISIONTREES,BRAINSTORMINGMETHOD,ANDATOPICMULTISOLUTIONTHIRDLY,THELEVELOFSTUDENTSDECISIONCONSCIOUSNESSANDTHEMOTIVATIONTOMATHEMATICSINGRADEONEWEREINVESTIGATEDANDSOMEAPPROPRIATEMATHEMATICALDECISIONMAKINGCURRICULUMRESOURCESWEREPUTFORWARDTHROUGHPRACTICALAPPLICATIONOFMATHEMATICALDECISIONMAKINGINMATHEMATICSTEACHING,THEPAPERTHINKSABOUTTHEDECISIONMAKINGINFUNCTIONTEACHINGFINALLY,THROUGHTHETEACHINGEXPERIMENT,FROMANOVERALLPERSPECTIVE,THEMATHEMATICSDECISIONMAKINGTEACHINGPAYSENOUGHATTENTIONTOTHEDIFFERENCESOFSTUDENTSCOGNITIONLEVELANDITSCONTENTSHASFEATURESOFMAKINGDECISIONINCERTAINCIRCUMSTANCESANDSTUDENTSINDEPENDENCYWILLBEFULLYREFLECTEDINTEACHINGINAWORD,THISPAPERPROVIDESTHEBASISFORSTUDENTSTOIMPROVETHEIRSTUDYRESULTS,DECISIONMAKINGCONSCIOUSNESSANDTHEINNERMOTIVATIONTOLEARNMATHEMATICSKEYWORDSDECISIONMAKING;MATHEMATICSDECISIONMAKINGTEACHING;DECISIONMAKINGCONSCIOUSNESSFUNCTIONSCLASSIFIEDNUMBERG6336第一章问题的提出一、问题提出的背景(一)高中生决策能力培养的重要性在现代社会中,公民应该具有合理的决策能力,决策能力的概念伴随着STS(科学、技术、社会)教育理念引入教育领域,作为高中生数学素养的重要方面,直接关系到学生解决问题的质量和效率,进而影响学生的可持续发展能力。在普通高中数学课程标准实验)中主要体现在三个方面明确把“决策”的“掌握/应用/迁移”作为课程设计的基本目标要求。现代社会是一个信息化的社会,人们常常需要根据所获取的数据提取信息,作出合理的决策,所以在必修课程的概率统计部分要求学生能够通过对数据的收集、整理、描述和分析以及对事件可能性的判断,来帮助人们进行科学的决策,从而降低决策风险。在选修系列4中单列专题“风险与决策”。通过实例理解风险决策的概念,学会决策的初步方法。以上这些足以证明数学决策教学的迫切性。因此发展高中生解决问题的决策能力也就相应成为高中数学教学的重要目标之一,同时也是普通高中数学课程标准实验)的基本理念之一。但是在实际的数学教学中,对高中生决策能力的培养长期没有得到重视。南京师范大学的涂荣豹教授曾经对江苏省12个市县的教师进行高中数学新课程实验基本状况的调查,该研究表明即使新课程的实施已有多日,决策仍然是数学教学中冷僻的词汇。其知晓率、关注率、应用率,“三率”齐低1。传统的数学教学中更多关注“解决某类决策型问题”的解题能力上(例如线性规划、期望与方差、微积分等),远没有将其放在教学的高度,关注度不够。对于决策究竟应该如何来理解基于决策的数学教学应该是什么样的决策能力在教学中如何培养还缺少理论分析与实践探索。(二)高中数学函数知识的重要地位及教学现状在基础年级的数学教学中,函数作为高中数学的核心内容,作为高中数学的灵魂与纽带,其思想方法贯穿于高中数学课程的始终。例如数可以看成特殊函数;数的运算可以看成特殊的二元函数;代数式可以容易地改造成一个函数;数列是特殊的函数;解一元方程就是求一个函数的零点,因而解方程也可纳入函数问题的讨论中;解三角形化归为一个三角函数的问题2;在普通高中数学课程标准中必修课程的“数学1集合与函数概念、基本初等函数(指数函数、对数函数、幂函数)、函数的应用,数学4三角函数、三角恒等变换”;选修课程中“选修22导数及其应用”这些都是直接涉及到函数的内容。同时在选修系列中的不等式、排列组合、离散型随机变量中也都体现了函数的思想与方法;同时作为刻画客观世界变化规律的数学模型,函数在自然科学和生产生活实际中也有着广泛的应用,有助于学生用“数学化”的视角来看待世界。我校从2004年开始实施新课程已将近七年,在教学中由于新一轮数学课程改革所实施的数学模块教学给予学校、教师在模块的自由组合上以更大的选择余地,所以在前几年对模块教学不断摸索的基础上,逐步形成了在高一第一学期开设数学必修一、必修四两个模块,这样既兼顾到必修一是其他模块的基础,也考虑到函数内容上的逻辑顺序,符合学生的认知结构。通过个人在基础年级的教学实践,刚入学的高一新生往往并不适应高中的教学方式、学习方式。反映到数学学科上,大多数学生的反应是不理解。这里面有数学学科自身的因素,例如数学学科特定的语言(集合的语言)、数学学科的抽象性(函数的概念)等等。往往导致学生对函数的定义、图象、性质难于理解,即便教师讲解了,学生理解的也不透彻;同时也受到学生、教师、父母、社会等诸多因素的影响高一学生由于受初中数学学习方法的影响,普遍表现出重技能轻思想,忽视对数学问题的进一步反思总结。致使上课听的明明白白,做题时无从下手;考上高中的学生,其在初中的往往出类拔萃,但进入高中后找不到这种优越感。教师的教学行为往往在高一即瞄准高考,在数学上进行过多的高强度、大量的习题训练使学生产生消极负面的情绪体验。致使学生对数学学习产生畏难情绪,学习兴趣下降,这种心理的不断强化,极易形成数学焦虑。父母对子女的期望过高。二、数学决策教学的研究现状在数学教育领域中,以往对决策的研究主要集中在三个方面关注于数学教师的教学行为的有效性。例如杨豫晖的博士论文数学教师教学决策研究3;关注在数学中解决一类决策型问题上,提高学生的解题能力。例如陈立争等人的立足解题决策能力深化数学解题教学4、张文良数学期望在风险决策中的应用5、彭海燕高考数学中的决策问题初探6。将决策放在教学的高度,仅有些许的论述。例如夏向阳交互决策在数学教学中的合理运用7、宋寿生高中数学新课程中数学决策的教学8、宁连华数学决策及其教学研究9。这些论述还只停留在理论阶段,缺乏实践探索。尽管决策在数学建模、数学应用、数学探究中都有涉及,但在实际教学中由于课时的限制及认知的不足,教师往往对决策活动的关注度不够,在操作层面上简单化处理,或者减少决策活动的时间让位于其他活动。在教学中主要表现为“确定性决策机械化”和“不确定性决策确定化”。所谓“确定性决策机械化”,即是指在解决“良构问题”时,对决策前的条件分析、原型模式的匹配,决策中的情况变化、自我监控及决策后的反思关注不够。造成确定性决策选择的简单化、机械化,相应的弱化了决策的主体性及思维的自主性。“题海战术”是这种状况的一个反映。虽然“良构问题”的解决,更多的体现在巩固基本知识、基本技能和基本思想方法上,解决过程中所用到的确定性决策也都有既成的方法与规则,对此无需再作构建和重组,但在教学中却不能纵容学生将解题策略的选择简化为机械地模仿、简单地匹配。无论多么简单的决策过程也应该引导学生自己去体验。所谓“不确定性决策确定化”,即是将解决“非良构问题”简化为等同于解决“良构问题”,由于教师的认识不足或课时所限对学生自主的决策行为关注不够,有意无意地占用了学生的决策时间,将原本丰富多彩的不确定性决策引导到教师在备课过程中预设的“标准思路”上来,扼杀了学生主动探索、尝试决策的机会。例如教师往往将复杂的问题进行转化、归类向学生提供模式化的题类形式(比如恒成立问题、根的分布问题)。这种做法表面上看来直接、全面、详细的交给学生解题的方法,有助于提高解题的效率,但教师包办了学生的思维过程,学生缺少自主探究、自主决策的过程体验。而如果将这一过程放在了课外让学生自主完成,又由于缺乏教师的有效指导,处于“自生自灭”的状态。鉴于在非良构问题的解决过程中含有相当的创造性成分,假如教师囿于教学任务、教学进度的要求而对学生的创造性的决策成果长期不予关注,就会压抑学生再决策的欲望和动机,造成创造力低下。所以决策教学应承担起这一责任。三、本研究的问题及方法(一)研究的问题在高一第一学期以函数为载体对数学决策在教学中的实践做些有意义的探索,主要围绕基于决策的数学教学应该是什么样的决策意识在教学中如何培养希望以此来提高学生的数学学习成绩及决策意识,增强学生学习数学的动机,使得培养学生决策能力的理念在数学课改中能得到更多的关注。(二)研究的方法本论文采用理论研究与实证研究相结合,主要的研究方法为文献法、调查问卷法、实验法。第二章决策的教学模式与方法一、有关决策概念的界定(一)决策1决策的内涵决策是人类固有的基本活动之一。但早期的决策行为更多的局限于个人经验积累的基础上进行,缺乏明确而科学的依据。例如司马迁在史记孙子吴起列传中记载的“田忌赛马”;诸葛亮提出三分天下的“隆中对”;朱元璋采纳朱升的“广积粮、高筑墙、缓称王”的建议,建立明朝。对于这些活动虽然没有“决策”一词述之,但都是决策中的典范。现代决策是众多学科和领域的研究对象。起先,决策作为运筹学的一个分支,也是控制论的研究对象。主要通过运用概率理论着重于研究在不确定条件下如何选择最好的行动方案。例如怎样建立决策问题所需的数学模型,怎样求最优解,怎样进行系统分析和模拟方法等运筹学问题。时致今日,决策理论仍然是应用数学的重要分支之一。后来决策进入管理学并成为其重要的组成部分,真正进入管理学领域始于20世纪60年代初期,这与诺贝尔经济学奖获得者SIMON、BUCHANANARROW,SAGE等人的贡献有关。尤其是SIMON提出了“管理就是决策”的著名论断,倡导利用数学方法和其它方法如逻辑推理、直观判断等研究管理决策问题。与数学中的决策理论主要研究如何选择决策方案不同,管理学中的决策理论更加重视研究决策的过程、步骤和备选方案的拟定。对于“决策”一词,不同领域的专家,其视角不同,定义也不一样。辞海中认为决策是人们改造世界过程中,以对事物发展规律及主客观条件的认识为依据,寻求并决定某种最优化目标和行动方案;马克思主义哲学大辞典中是这样定义的决策是人们在社会实践活动中,根据对客观规律及其发挥作用的条件的一定认识,在主观意志的参与下进行的选择目标和行动方案的活动,是人所特有的主观能动性的自觉表现;简明文化人类学词典指出决策是指人们为了实现一个特定目标,在占有一定的信息,数据资料和经验的基础上,根据客观环境和条件的可能性,运用科学的理论、方法和技术系统地计算、分析主客观诸因素后所做出的决定;心理咨询大百科全书则认为所谓决策是人们为各种事件出主意、做决定的过程。它是一个复杂的思维操作过程,是信息搜集、加工,最后作出判断、得出结论的过程等等。即便是在管理学中决策也有广义与狭义两种解释。广义解释决策是一个过程。例如决策科学辞典中认为决策指人们为了达到或实现一个目标,在占有信息和经验的基础上,根据客观条件,借助一定方法,从提出的若干个备选行动方案中,选择一个满意合理的方案而进行的分析、判断和抉择的过程;狭义解释决策是行动方案的最后选择,即“拍板”。例如现代科学技术辞典认为所谓决策就是在几个可能方案中做一选择。显然最终方案的选择仅仅是决策全过程中的一个环节,如果没有在此之前的许多活动,带有决断性的选择必然会成为主观武断的行为,决策也难免要出乱子10。所以广义的定义是比较合适的。而在教育教学中,要经过提出问题、搜集资料、确定目标、拟定方案、分析评价、最终选定等一系列活动过程,而在方案最终决定后,还有一个检查监督、贯彻执行阶段,其决策应当包括这一完整的过程。所以,我们将决策定义为决策是指人们在有限的时间内,为了达到一定的目标而从诸多方案中选择最佳或最满意方案并付诸实施的整个过程。2“决策”与“选择”的辨析无论人们做任何决策,其本身都是一种选择,无论结果是正确的决策还是错误的决策。但决策的本质是“策略的选择”是决策者对末来实践活动的目标、方针、原则和方案所作的抉择,带有决定、决断的色彩。从程度上看决策总是伴随着有利或不利的结果,这与一般意义上的选择不同。决策中的选择行为可区分为两种情况,一种是从整体上即活动的整个过程中,伴随决断、决定的选择成为全过程的关键环节另一种是在决策活动的各个阶段,都发生选择行为,这些选择也大多伴随着决断、决定11。3决策的认知心理学基础诺贝尔经济学奖获得者西蒙首次从认知心理学的角度研究了决策问题,为用现代决策理论来解释人类决策行为的产生提供了重要的心理学依据。认知心理学认为,人类决策有赖于知觉,知觉有赖于两种不同形式的信息来自环境的信息和来自知觉者自身的信息。如果没有环境中的刺激就不会有知觉,而另一方面,如果知觉者自身的记忆中不具有合用的信息,也不会产生知觉。也就是说,为了确定某一事物的意义,人们需要把环境刺激和头脑中已具有的有关知识连结起来。这是一种定向、抽取特征的过程,将当前的信息与记忆中的知识相对照,然后再定向、再抽取特征,直至获得满意的知觉为止。在决策中,这种多次循环是非常必要的。通常,首次循环并不能产生精确的抉择,但它可以缩小所需抉择的范围并对进一步抽取特征具有指导意义,这样在以后的循环中便可以逐渐产生出精确的抉择来12。现代决策理论按照决策的性质不同,将决策分为程序性决策和非程序性决策。所谓程序性决策(常规性决策、例行决策、重复决策)即在实际工作中经常发生的、需要解决的问题,它们以相同或基本相同的形式重复出现,必然会呈现其规律性,因此,可采用例行的解决办法。程序性决策的心理基础是人的思维定势。思维定势是一种心理准备状态,作为一种内化了的习惯,在思维不受到新的干扰的情况下,人们依照既定的方向或方法去思考。在程序性决策中受定势的影响,人们对同样的刺激和同样的情况产生相同的反应。不过有时人们往往用内在的简化心理模型去套用实际情况,致使在日常生活中表现出不符合客观理性的决策行为,因此定势在程序化决策中往往起到很大的消极作用。非程序性决策(非常规性决策、例外决策)即无先例可循的、具有大量不确定因素的决策活动。非程序性决策具有极大的偶然性和随机性,往往缺乏准确可靠的统计数据与情报资料,需要决策者有很大的创造性和很高的决策艺术,才能保证非程序性决策的正确无误。非程序性决策的心理基础是人的直觉思维。以西蒙为首的认知学派为此做了大量的研究并提出了理论依据由于人类思维能力的有限性,以至于无法作出彻底的理性判断,所以往往依靠直觉。直觉来自于经验,这些经验是已经被证明了的,是直觉决策的心理基础。4决策的特征决策的整体性特征一项决策的形成必然是主体在综合考察对象诸要素及其关系的基础上,从整体上思考、分析后得出的一种行动方案。在这个过程中,决策者要对摄入的信息舍弃次要的非本质属性,突出信息所反映的本质属性,一揽子把握住中心和要害,探索到系统中关键性、实质性的东西,从而整体的构想出一种行动策略。譬如,棋类大师的高明之处就在于对棋谱有一种整体识别、决策能力,能够迅速建立起“大局观”下的整体印象一个具有内在联系的棋谱,从而在需要时整块地取出。决策的转换性特征一项决策的出台,通常不是一蹴而就的,而是从最初的构想,不断随着认识的深化而改变看法,逐步转换为成熟的策略。转换表明决策不是一个静止的整体形象,而是包含有变化的系统。正如皮亚杰所说“决策不是静止的形式而是转换的系统”。在转换规律的支配下,整体的守恒不但不与各个要素的各种变化相矛盾,相反,策略的整体性正需要由这种变化而体现出来。而且,决策的转换性既可以是不在时间过程中进行的共时性转换,也可以是在时间过程中进行的历时性转换。决策的自我调节性特征自我调节性意味着决策发生的一系列转换是在决策产生的过程中进行的,它使决策具有守恒性和由此而来的封闭性。决策是在自我调节的过程中形成的,决策者只有通过对所接受的信息进行自我检查、自我控制、自我反思等加工才能形成合适的决策以自我调节为基础的决策特别富有成效,他揭示了结构的形成与转换的内在机制9。5决策的一般过程决策活动不是为解决偶然的、孤立的某一问题而进行的,不是选择方案的简单行动。决策的过程是复杂的,其中包括一系列的步骤。了解这些步骤可以提高个人分析和决策能力。培养决策能力的间接途径之一就是运用一种模式,这种模式提供了包括决策基本规则。步骤1鉴别问题和定义问题。首先,决策者必须能够区分问题的症状与问题的真实。这需要深刻的考察和思考。由于问题的产生有多种原因,也许是因为不良的结构,缺乏监督,也许是对执行的活动缺乏了解。有时候在问题被提出来之前,决策者可以根据自己的经验对问题有所预知。当问题得到鉴别之后,须由一定的参量来定义问题。在此阶段,决策者应考虑这样一些问题是否对此问题有决策权是否具备专业知识时间是否充裕问题的解决将会产生哪些益处这些益处的重要程度如何通过对问题的定义,可以确定一系列的子任务。为了确保有效性,任务应该是可以实现的。步骤2分析问题。当问题被鉴别和定义之后,则需要在充分收集资料的基础上,对问题进行系统分析。在此阶段,搜索资料的范围主要取决于问题的性质和复杂程度,并应以书面的形式记录下来。获得数据资料和信息的主要途径是决策者的经验和其他人的观点、建议和想法。在收集到所需的信息后,此后的工作就是理解和解释信息。按照有序的方法来整理信息。按信息的成本、程序时间、决策者能力、收益等等进行归类。通过整理会使决策者清楚那些数据资料更重要。在检查整理完数据之后,决策者即明确要解决的真实问题是什么。步骤3拟定可供选择的方案。一旦明确了真实问题的所在,接下来的步骤是寻求解决问题的可供选择的方案。到目前为止,我们所搜集的信息也可能表明一些可供选择的解决办法。决策者应该尽可能多地考查可供选择的方案,可供选择的方案越多,解决办法越完善。过去的经验、创造性以及关注管理方面的最新实践都有助于拟定备选方案。寻求解决问题的备选方案的过程是一个具有创造性的过程。在这一阶段,决策者必须开拓思维,充分发挥自由想象力。寻求更多备选方案的方法之一是“头脑风暴法”。在头脑风暴法中。一群具有为解决问题所需的知识和专长的人聚集在一起,讨论出尽可能多的潜在解决方案。由这种方法激起的热情常常创造出新的和具有价值的想法。步骤4评价备选方案。备选方案拟定出之后,决策者应从内心对每一个方案的可应用性和有效性进行检验。他必须想象如果这些方案正在实施的话,将会怎样。必须对每一个备选方案所希望的结果和不希望的结果出现的可能性进行检验。可运用一些标准来对这些备选方案进行比较。在这些标准中可用到的一些因素有每个备选方案涉及的风险、可以利用的时间和需要时间、可利用的设施和资源以及费用效益分析。评价备选方案时可以采用下面的指标来进行对比,如(1)要求的时间;(2)包括的成本;(3)涉及的风险;(4)收益或优点;(5)局限性。如果所有的备选方案都不令人满意,决策者还必须进一步寻找新的备选方案。决策者必须根据工作的目标来评价每一个备选方案的效用。步骤5选择最佳方案。供评价备选方案而设立的方案比较表将清楚地表明其中哪一个备选方案更优越。决策者不能总是只顾及备选方案的优越性,还必须在选择最佳方案时考虑到可利用的资源。在选择最佳方案时,一个有用的规则是使执行方案过程中可能出现的问题数量减少到最小,而执行方案对实现目标的贡献达到最大。在选择方案时可以考虑以下因素经验在选择最佳方案时,将过去的经验作为一个指南;直觉直觉与经验有关,它包括唤起决策者过去的记忆,并将其应用于对未来的预测;他人的建议决策者必须从同事、上级和下级那里寻求帮助和指导;实验如果可能的话,采用这种方法来检验备选方案。这类实验不应过多的消耗成本和时间。在选择最佳方案时,考虑上面所述的一个或多因素将会提高决策的效果,这些因素的相对重要程度取决于所要解决的问题的性质、受问题影响的人员、为解决问题需要的时间等等。步骤6执行方案。选择出最佳方案,决策过程还没有结束。决策者还必须使方案付诸实施。他必须设计所选方案的实施方法。一些决策者善长于分析、确定备选方案和选择最佳方案。但却不善于将他们的想法付诸实施。一个优秀的决策者必须具备这两种能力,他既能做出决策又能化决策为有效的行动。步骤7检查方案的有效性。决策者的最后的职责是定期检查计划的执行情况,并将实际情形与计划结果进行对比。必须根据已建立的目标来衡量效益,通过定期检查来评价方案的效果。检查方案的效果也有助于提高决策者的决策技能与水平。决策是一种技术,而且和所有的技术一样,它也是可以提高的。人们可能通过实践,以及反复的决策实践来提高决策水平。为了提高决策质量,一些信息的反馈是必要的。比如对以前决策的效果的检查就可以提供所需要的一些反馈。通过检查,决策者可以从中知道他的错误是什么,出在什么地方,以及如何改善13。(二)数学决策1数学决策的定义我们将数学决策定义为在数学问题解决的过程中所进行的决策活动。2数学决策的类型美国著名数学家哈尔莫斯曾说“问题是数学的心脏”。数学教学的本质是问题的教学。“你要求解的问题可能不大,但如果它能引起你的好奇心,如果它能使你的创造才能得以展现,而且,如果你是用自己的方法去解决它们的,那么,你就会体验到这种紧张心情,并享受到发现的喜悦。在易塑的青少年时期,这样的体验会使你养成善于思维的习惯,并在你心中留下深刻的印象,甚至会影响你一生的性格”波利亚。在数学教学中,林林总总的数学问题是引发学生思维与探索活动的向导。有了问题,学生的好奇心才能激发;有了问题,学生的思维才开始启动;有了问题,学生的探究才真正有效;有了问题,学生的学习动力才能持续14。显然认识数学问题的类型有利于更好的理解数学决策。数学问题可以分为良构问题和非良构问题,所谓良构问题是由明确的初始状态、己知的目标状态和限制清楚的一些逻辑因素组成的,是常见的一类非情境化问题,它一般有三种类型归纳结构问题、转换问题和重新排列问题。其本身具有以下特点对于问题的组成要素清楚的加以呈现;问题本身往往不具有实际背景,解决方式相对程序化,有相对的例题原型与之相对应;其限制条件常常被一种可预见的描述性的方式来加以明确的界定,条件本身就蕴含着解决问题所需要的规则和原理;问题涉及到的知识领域中常规的、结构良好的概念、规则及原理;问题的解决往往有一个最佳、正确的求解方法和标准答案。与良构问题相对应的是非良构问题。所谓非良构问题通常以一定的情境为载体,而且问题情境的某一方面或多个方面没有特别的界定,问题的表述比较隐晦或者问题所呈现的信息中缺少解决问题的关键性条件。其本身具有以下特点条件的界定不明确,问题的构成存在未知的因素;问题的解决具有多种的方法和途径,对于不同的评价标准答案也不一样;课本上没有可遵循的案例或简化的模型与之相匹配;不能确定在解决问题中会运用那些概念和定理,以及如何组织它们;问题的解决者需要对问题作出个人判断,并表达自己的观点和信念。在解决良构问题的过程中,由于具有案例原型或简化的模型与之相匹配,决策的选择与问题状态之间的关系是已知的或概然的。而在解决非良构问题的过程中,由于缺乏案例原型或简化模型与之相匹配,两者之间的关系是不确定的、或然的,需要进行反复的尝试。学生对在解决良构问题中所获得的技能,往往不能够将他们有效并正确的迁移到解决情景化的非良构问题中。因此由于解决问题的类型不同及解决问题时的决策特点不同,可以相应地将数学决策分为确定性决策、不确定性决策和尝试决策15。显然由于良构问题是建立在已有方法、规则、原理的基础上,且有案例原型可以遵循。其解决过程基本上是一个模式匹配的静态过程,呈现出有序、线性、稳定的状态,决策的选择仅仅在于学生类比模型将合适的解决策略迁移过来。因此,这样的决策就是确定性决策;而非良构问题由于其没有现成的模型相匹配,也没有现成的方法、规则可以遵循。其解决过程是一个模式生成的高度动态过程,依据的是一系列不可预测的范型,呈现非线性的变化状态16。学生遇到此类问题时没有明显的线索方法,需要调动多方面的智能活动在反复尝试的基础上来拟定解决策略。所以显然非良构问题所对应的是不确定性决策。不确定性决策这一过程是及其复杂的,在一个成功的解决问题的过程中,包含着多次的决策。解决者在初始阶段往往要经历在头脑中产生多种不成熟的思路,形成不确定决策的雏形。这些方案往往来源于确定性决策的一些已知方案,将其放在不确定性的决策情境中作为获得策略的线索。然后通过解决者根据其已有经验的推理分析,将各个思路形成一个个具体的行动方案(这些方案可实行的机会并不均等),决策者对这些行动方案进一步的探索分析,其不确定性不断降低,确定性在不断增加。某些方案会在决策者的头脑中逐渐清晰明确并占据主体地位。这时的决策具有了明确的指向性,只不过能否走向成功还不知道。所以这种决策可称之为尝试性决策。因此,非良构问题的解决过程要经历从通过确定性决策获得对非良构问题的不成熟思路(不确定性决策)到方案逐渐清晰,具有倾向性的解决策略(尝试性决策)的转化过程。由此可见,确定性决策与传统“三基”的掌握目标密切相关;不确定性决策过程本身体现的是一个动态过程,在这一过程中更多地依赖决策者探索的意识、创造的潜能、以及在决策过程中的自我监控等思维素养;尝试性决策则是在已有认知经验的基础上,通过探索方案的可行性上产生的带有“试误”意味的方案抉择。(三)决策教学1决策教学的内涵所谓决策教学,即在教学过程中培养和发展学生的决策意识和决策能力。其展开途径主要有两种方式一是将决策的程序作为教学过程来加以运用;二是在教学过程中使用一两种简单的决策方法。因此,决策教学是将决策作为工具和手段,融入到知识技能的传授过程中并与教学方法相结合。2影响决策教学的因素从传统的文化氛围看,中国历来缺乏尊重个人的理性传统和民主传统。很少将孩子放到与自己平等交流的位置,致使个体的主观能动性受到压抑,缺乏作出决策的权利和空间。反映在教育上,教育内容以书本知识为主,缺乏与其他领域的横向联系,缺乏与生活的相互渗透。教育方式以保守和压制为主,反对学生的独立意识和创新精神,注重服从和规范化。因此,培养出来的学生缺乏理性、成熟的决策意识和能力。从学生个体因素看,学生本身的决策能力和性格,其在初中时的学习经验都会影响到其在决策教学中的参与度。从环境因素看,学生在进行决策时并不是孤立的尤其在面对复杂的决策任务时,往往需要向其他人寻求帮助(同学、教师、家长等)。因此,在必要的时候,能否得到别人的帮助及给予帮助的形式都是很重要的。相应的物质支持也很重要,例如为了完成决策任务学生往往需要寻求课外书、网络资源、为小组活动提供合适的场所等等。从教师的因素看,由于在教学中是以教师为主导,学生为主体。因此,教师本身对新课程理念的理解程度如何对决策教学的认识程度如何对传统教学方式的改变、对学生评价方式的改变如何都会对决策教学的实施产生影响。二、基于决策的教学模式的构建图21决策的教学模式(一)创设问题或决策环境教育心理学认为引起学生学习的最直接动力,既非远大的理想,也不是美好的末来,而是知识的趣味性和学生本身的好奇心。决策环境作为进行决策的前提,其创设的质量将直接影响到决策活动能否得以顺利进行。荷兰数学家和教育家弗莱登塔尔认为“数学来源于现实,且寓于现实中。”普通高中课程标准也将强调发展学生的应用意识作为其基本理念之一。“数学作为科学的语言,是一切科学和技术的基础,是我们思考和解决问题的工具。17”所以从学生的数学现实出发,利用实际生活创设决策环境是我们的首选。所创设的问题即可以由教师根据学习目标的特点来创设具有决策意味的情境,也可以由学生自己提出问题,教师加以把关。同时在实际课堂教学中应有效的运用现代教育技术手段,使得决策环境更加神形兼备,来激发学生参与决策的动机。其次,在教学中除了要力求使所设计的问题新颖奇特、对学生具有较强的吸引力、能够激发学生的求知欲和学习的心向之外,还要具有一定的“生长性”。既要让学生能够达到教学目标的基本要求,也要注意问题的层次性及其延伸价值,最好是可以连锁引发出更高决策价值的问题。创设一个好的具有决策意味的问题不仅是一节课的“敲门砖”,更在于其在整个教学过程中能够引起教师与学生的进一步思考与反思,发挥“链”式作用。在教学中教师既要考虑决策环境的现实性和数学性,又要考虑学生的认知水平的差异和数学现实,要在学生的“最近发展区”的基础上来进行设计,进而构建合适的决策活动氛围,这是决策活动顺利进行的基本条件。在该阶段应让认识的主体学生明确想决策什么创设问题要有一定的决策意义而容易引起学生对问题的关注;可决策什么问题的解决办法不应是显而易见的,是没有现成的方法可供使用的但又确实与已学内容有一定联系的问题,符合学生的“数学现实”。(二)决策规划与组织分配学生对决策情境有了初步的认识之后,教师应引导学生进行独立的观察、猜想、实验、联想、类比、归纳等探索活动。这一过程是挖掘学生个性思维品质,培养学生自主学习能力的关键。在实际教学中学生本身对决策情境的情感、过程体验才是最真实可靠的,也只有这样,学生才能对决策环境进行深入的分析,思考,进一步将其数学化,提炼出数学模型、确立决策的基本任务。或者对于复杂的决策活动将其决策步骤预估后分解成更简单、更具有可供操作性的子任务。在这一阶段教师首先应给予学生充分的思考空间,要抑制自己强烈的要牵着学生思维的冲动,避免过多的参与使学生产生依赖心理;其次教师在此阶段应确定决策活动的实际展开方式,如那些任务需要由学生个人独立完成,那些需要小组合作,那些决策任务需要给予一定的提示或指导等等9。因此需要教师了解每一个学生的水平,充分进行备课,预见到决策中可能遇到的困难。(三)独立决策或协作决策总体决策规划之后,即进入实质性决策活动阶段。在这一阶段要特别注意鼓励学生进行“各自为战”的独立决策,并提醒学生在分析推理的过程中对自己的活动进行自我监控,培养其自主意识,以便形成正确的决策方向。学生的自我监控活动主要是以“反问自己”的方式展开的,通过向自己提问,促使自己认清走向目标的步伐、与目标接近的程度,以及任何影响自己计划前景的变化等状况,并检验自己所采用的方法、所沿袭的方向及路径,力求确保自己的思维活动始终处于理智状态,及时对自己的处境、问题的性质和前景做出判断,以便做出合理的选择和必要的调整18。对于由不同方面构成的复杂决策活动也可采取协作决策的形式,协作决策的优点首先在于其参与者多、汇集的信息多、建议也较多,有较宽的选择面。其次,协作决策会使学生往往感觉决策活动由“教师的指示”变为“我们自己的方案”,所以学生参与决策时更加主动,热情更高。在协作决策的组织上主要考虑两个维度一是学生实际数学水平的不同来进行分组即组内互质;二是要考虑学生的个人意向,由学生自己寻找合适的协作伙伴。由于协作决策中决策能力与决策方式受到每个成员的能力、经验及个性特征的影响。所以要避免出现两种极端现象一是群体过于保守,难于决断,无人负责;二是整个群体受领袖人物思想的左右,决策是由个人而不是群体做出的。因此参与决策的每个个人都有均等的机会发表自己的意见并被重视是进行有效协作决策的前提。在协作决策中可以采用“非交往程式化群体决策法”来增强小组成员的参与度,逼迫学生参与到决策活动中来19。在这一阶段中教师不在是知识的传授者、权威、智慧的源泉,而是学生进行决策活动的组织者、指引学生决策方向的指导者。特别是对于走错方向的同学,教师应尽可能多的肯定其决策思维过程中的合理成分并给予积极的指导。除了作为组织者、指导者的角色之外教师更应充当一个“反思实践者”,不仅需要参与到对决策活动中与学生共同进行探索,彼此形成一个真正的“学习共同体”,更需要对“如何促进学生进行有效的决策活动”进行探究。以期达到与学生平等学习,相互促进,共同成长的目的。(四)成果积累与过程评价美国课程理论学家斯塔弗尔比姆说“评价的最终目的不是为了证明而是为了改进”。无论是独立决策还是协作决策,均将获取过程知识作为决策活动的主要目标,利用反馈的原理和方法,及时检查决策活动中某些环节的优劣,以利于不断地调节和优化决策过程,而不以是否决策出正确结论作为衡量决策活动成效的唯一标准。即贯彻过程评价与结果评价相结合、定性与定量相结合的原则。学生决策的成果体现在每一活动环节中参与效果的积累,可以让学生将自己所走的弯路、所范的错误的体验与感悟记录下来,最好要求学生写出数学日记或数学作文,即能促进其反思能力的培养也能看到其数学观的变化。无论是教师评价或学生自评都要以决策活动的参与程度作为标准,尤其在进行协作决策时可由每个小组的组长负责记录组员在决策活动中有效发言次数,作为评判的依据。而决策结论的完美程度仅作为评判的一项指标。(五)求异探新或问题延伸这一阶段是在实际教学中最容易忽视的薄弱环节,基于决策的数学学习应尽量弥补这一缺陷。这意味着获得决策成功的决策方案本身并不是决策活动的结束,而应当把决策活动延续到课外和后续内容的学习中。问题引领是促进学生思维水平发展的重要手段,因此应将问题引申、推广。引导学生用变维改变问题的维度、变序改变问题的条件、结论等方式提出新问题,将决策活动自然地延续下去,同时问题的延伸应具有阶梯性,体现分层教学的思想,以适应不同水平学生的需要。对于能否获得最终结果并不重要,而是以培养学生主动参与数学决策活动的意识和习惯为最终目的。“问题引导,过程决策”模式实施的关键是创设问题或决策环境,实施的难点则是决策过程要素的组织规划。决策环境创设的质量直接影响决策活动的顺利进行,要力求使所设计的问题新颖奇特、具有较强的吸引力,并具有一定的“生长性”、可以连锁引发出更具有决策价值的问题。决策过程涉及到决策活动的规划、决策时机的把握、决策成果的评价以及决策中的自我监控等要求较高的活动形式,这正是数学决策教学的难点所在,需要学生具备一定的主动意识和耐心,教师当然也需要做更多、更细致的工作。三、培养学生决策意识的方法(一)决策树所谓决策树是一种将复杂问题分解为一系列独立、简单的问题,然后加以各个突破的解决问题的方法。决策树方法因其运用树状图形来分析和选择决策方案而得名。决策树是由决策结点、分支和叶子绘制而成的结构图。其中结点代表决策、叶子代表一种可能的分类结果。由于其当遇到一个需要决策的问题时,通过绘制决策树可以顺着根节点向叶节点方向依次判断。由于高一学生尚没学习概率,所以选择离散型多阶段决策问题来培养学生的决策意识。例如资源分配问题20将有限的资源进行合理分配,使得总的收益最大某公司有四名推销人员在A、B、C三地促销,推销员人数与收益关系如下表,求一个总收益最大的分配方案01234A2032475766B4050607182C5061728483表21收益分配方案从收益表前三列可以看出,A地在增加人手后,收益值增长显著,故应优先考虑向A地派人,C地其次,B地居末现考虑A地至少派1人,作决策树如下A1A2A3B0B1B2B3B0B1B2A4B0B1B0C3C2C1C0C2C1C0C1C0C0156154153153159158157158157156其他例如设备的合理更新年限,各种零件加工顺序的合理安排等问题,均可转化为决策树来求解,特别是决策目标较少时,此方法较为适用(二)头脑风暴法(BRAINSTORMING)在各种培养学生决策意识的方法中,头脑风暴法占有重要地位。头脑风暴法(思潮冲击法、思潮激荡法)是由美国创造学家奥斯本(ALEXFOSBORN)1957年正式提出的,简称“BS法”。头脑风暴法分为直接头脑风暴法和反向头脑风暴法。直接头脑风暴法是在集体解决问题的课堂上,通过延缓作出评价,让所有学生在自由愉快、畅所欲言的气氛中踊跃发言。通过相互之间的信息交流,让各种思想火花自由碰撞,好像掀起一场头脑风暴,进而引起思维共振产生组合效应,从而引出多种多样的解决问题的方案。直接头脑风暴法的实施应遵循以下四条原则排除评论性的判断对设想的评论都要在“头脑风暴”结束后进行;鼓励“自由想象”设想看起来越荒谬可能越有价值;要求提出一定数量的设想设想数量越多,就越有可能获得更多有价值的设想;探索研究组合与改进设想除了与会者本人提出的设想以外,要求与会人员提改进他人设想的建议,或者要求与会者指出按照他们的看法怎样才能将几个设想综合在一起,然后提出一个新的设想21。显然良好的师生关系和民主和谐的课堂气氛是头脑风暴法得以实施的保证。教师在提出问题后,应鼓励学生寻找尽可能多的答案设想,不必考虑该答案是否正确,教师也不作评论,一直到所有可能的设想都提出来了为止22。(三)通过解题训练培养学生的决策意识一题多解是变式教学的重要组成部分,也是中国数学教学的一个典型特征,在培养学生发散思维方面具有重要的作用。引起一题多解的原因在于学生阅读数学问题后依靠自己的数学直觉对问题的切入点不同,尤其反映在思想、方法的选择上。因此通过学生对解题方法的自我辨析,对所得出的不同方法和解答进行比较和鉴别,寻求最优化的解答,评价解题过程的成败。这样做即有利于培养学生的表达能力,也有利于其决策能力的提高。但在实际教学中,要注意一题多解的深度与广度,应与学生的能力水平相适应。举例说明例1求实数的范围,当时,不等式恒成立。A0,1X210XA解法一(函数思想)令,即求在上的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论