




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ACADEMYPUBLISHERIMAGEPIXELFUSIONFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2,ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYSURYAMANINAGAR799130,TRIPURA,INDIAEMAILMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA700032,INDIAAICTEEMERITUSFELLOWEMAILDEBOTOSHINDIATIMESCOM,MITA_NASIPURI,DIPAKKBASUGMAILCOM,MKUNDUICSEJDVUACINABSTRACTINTHISPAPERWEPRESENTATECHNIQUEFORFUSIONOFOPTICALANDTHERMALFACEIMAGESBASEDONIMAGEPIXELFUSIONAPPROACHOUTOFSEVERALFACTORS,WHICHAFFECTFACERECOGNITIONPERFORMANCEINCASEOFVISUALIMAGES,ILLUMINATIONCHANGESAREASIGNIFICANTFACTORTHATNEEDSTOBEADDRESSEDTHERMALIMAGESAREBETTERINHANDLINGILLUMINATIONCONDITIONSBUTNOTVERYCONSISTENTINCAPTURINGTEXTUREDETAILSOFTHEFACESOTHERFACTORSLIKESUNGLASSES,BEARD,MOUSTACHEETCALSOPLAYACTIVEROLEINADDINGCOMPLICACIESTOTHERECOGNITIONPROCESSFUSIONOFTHERMALANDVISUALIMAGESISASOLUTIONTOOVERCOMETHEDRAWBACKSPRESENTINTHEINDIVIDUALTHERMALANDVISUALFACEIMAGESHEREFUSEDIMAGESAREPROJECTEDINTOANEIGENSPACEANDTHEPROJECTEDIMAGESARECLASSIFIEDUSINGARADIALBASISFUNCTIONRBFNEURALNETWORKANDALSOBYAMULTILAYERPERCEPTRONMLPINTHEEXPERIMENTSOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSDATABASEBENCHMARKFORTHERMALANDVISUALFACEIMAGESHAVEBEENUSEDCOMPARISONOFEXPERIMENTALRESULTSSHOWTHATTHEPROPOSEDAPPROACHPERFORMSSIGNIFICANTLYWELLINRECOGNIZINGFACEIMAGESWITHASUCCESSRATEOF96AND9507FORRBFNEURALNETWORKANDMLPRESPECTIVELYINDEXTERMSIMAGEPIXELFUSION,EIGENSPACEPROJECTION,RADIALBASISFUNCTIONNEURALNETWORK,MULTILAYERPERCEPTRON,FACERECOGNITIONIINTRODUCTIONHUMANFACERECOGNITIONHASALREADYESTABLISHEDITSACCEPTANCEASASUPERIORBIOMETRICMETHODFORIDENTIFICATIONANDAUTHENTICATIONPURPOSESITISTOUCHLESS,HIGHLYAUTOMATEDANDMOSTNATURALSINCEITCOINCIDESWITHTHEMODEOFRECOGNITIONTHATWEASHUMANSEMPLOYONOUREVERYDAYAFFAIRS1ITHASEMERGEDASAPREFERREDALTERNATIVETOTRADITIONALFORMSOFIDENTIFICATION,LIKECARDIDS,WHICHARENOTEMBEDDEDINTOONESPHYSICALCHARACTERISTICSRESEARCHINTOSEVERALBIOMETRICMODALITIESINCLUDINGFACE,FINGERPRINT,IRIS,ANDRETINARECOGNITIONHASPRODUCEDVARYINGDEGREESOFSUCCESS2ITHASMANYPRACTICALAPPLICATIONS,SUCHASBANKCARDIDENTIFICATION,ACCESSCONTROL,MUGSHOTSSEARCHING,SECURITYMONITORING,SURVEILLANCESYSTEMSETC3,4,5MOSTOFTHERESEARCHEFFORTSINTHISAREAHAVEFOCUSEDONVISIBLESPECTRUMIMAGINGANDGEOMETRICFEATUREEXTRACTIONDESPITETHESUCCESSOFAUTOMATICFACERECOGNITIONTECHNIQUESINMANYPRACTICALAPPLICATIONS,THETASKOFFACERECOGNITIONBASEDONLYONTHEVISIBLESPECTRUMISSTILLACHALLENGINGPROBLEMUNDERUNCONTROLLEDENVIRONMENTSTHECHALLENGESAREEVENMOREPROFOUNDWHENONECONSIDERSTHELARGEVARIATIONSINTHEVISUALSTIMULUSDUETOILLUMINATIONCONDITIONS,VIEWINGDIRECTIONSORPOSES,FACIALEXPRESSIONS,AGING,ANDDISGUISESSUCHASFACIALHAIR,GLASSES,ORCOSMETICSINTHISCONNECTION,THEREARETWOMAJORCHALLENGESVARIATIONSINILLUMINATIONANDPOSE6SUCHPROBLEMSAREQUITEUNAVOIDABLEINAPPLICATIONSSUCHASOUTDOORACCESSCONTROLANDSURVEILLANCEPERFORMANCEOFVISUALFACERECOGNITIONISSENSITIVETOVARIATIONSINILLUMINATIONCONDITIONSANDUSUALLYDEGRADESSIGNIFICANTLYWHENTHELIGHTINGISDIMORWHENITISNOTUNIFORMLYILLUMINATINGTHEFACETHECHANGESCAUSEDBYILLUMINATIONONTHESAMEINDIVIDUALAREOFTENLARGERTHANTHEDIFFERENCESBETWEENINDIVIDUALSVARIOUSALGORITHMSEGHISTOGRAMEQUALIZATION,DROPPINGLEADINGEIGENFACESETCFORCOMPENSATINGSUCHVARIATIONSHAVEBEENSTUDIEDWITHPARTIALSUCCESSTHESETECHNIQUESATTEMPTTOREDUCETHEWITHINCLASSVARIABILITYINTRODUCEDBYCHANGESINILLUMINATIONAVISUALFACERECOGNITIONSYSTEMOPTIMIZEDFORIDENTIFICATIONOFLIGHTSKINNEDPEOPLECOULDBEPRONETOHIGHERFALSEALARMSAMONGDARKSKINNEDPEOPLETHERMALIRIMAGERY7HASBEENSUGGESTEDASAVIABLEALTERNATIVEINDETECTINGDISGUISEDFACESANDHANDLINGSITUATIONSWHERETHEREISNOCONTROLOVERILLUMINATIONTHERMALIRIMAGESREPRESENTTHEHEATPATTERNSEMITTEDFROMANOBJECTOBJECTSEMITDIFFERENTAMOUNTSOFIRENERGYACCORDINGTOTHEIRBODYTEMPERATUREANDCHARACTERISTICSSINCE,VESSELSTRANSPORTWARMBLOODTHROUGHOUTTHEBODYTHETHERMALPATTERNSOFFACESAREDERIVEDPRIMARILYFROMTHEPATTERNOFBLOODVESSELSUNDERTHESKINTHEVEINANDTISSUESTRUCTUREOFTHEFACEISUNIQUEFOREACHPERSON,ANDTHEREFORETHEIRIMAGESAREALSOUNIQUEITISKNOWNTHATEVENIDENTICALTWINSHAVEDIFFERENTTHERMALPATTERNSFACERECOGNITIONBASEDONTHERMALIRSPECTRUMUTILIZESTHEANATOMICALINFORMATIONOFHUMANFACEASFEATURESUNIQUETOEACHINDIVIDUALWHILESACRIFICINGCOLORRECOGNITIONANATOMICALFEATURESOFFACESUSEFULFORIDENTIFICATIONCANBEMEASUREDATADISTANCEUSINGPASSIVEIRSENSORTECHNOLOGYWITHORWITHOUTTHECOOPERATIONOFTHESUBJECT6RECENTLY,RESEARCHERSHAVEINVESTIGATEDTHEUSEDATAFUSIONMETHODWHICHCOMBINESDIFFERENTTYPESOFDATAGATHEREDBYTHESIMULTANEOUSUSEOFSEVERALSENSINGMODALITIESTOGENERATEANEWTYPEOFDATAVARIOUSPERCEPTUALMECHANISMSINTEGRATETHESESENSESTOPRODUCEACADEMYPUBLISHERTHEINTERNALREPRESENTATIONOFTHESENSEDENVIRONMENTTHEINTEGRATIONTENDSTOBESYNERGISTICINTHESCENETHATINFORMATIONINFERREDFROMTHEPROCESSCANNOTBEOBTAINEDFROMANYPROPERSUBSETOFTHESENSEMODALITIESTHISPROPERTYOFSYNERGISMISONETHATSHOULDBESOUGHTFORWHENIMPLEMENTINGMULTISENSORINTEGRATIONFORMACHINEPERCEPTIONTHEPRINCIPALMOTIVATIONFORTHEFUSIONAPPROACHISTOEXPLOITSUCHSYNERGISMINTHETECHNIQUEFORCOMBINEDINTERPRETATIONOFIMAGESOBTAINEDFROMMULTIPLESENSORSRESEARCHWORKONFUSIONHASBEENCARRIEDOUTONLYFORLASTFEWYEARSFUSIONMETHODSCANBECLASSIFIEDINTOTWOCATEGORIESASSTATEDIN8ONEISABOUTWEAKLYCOUPLEDFUSIONMETHODS,ANDTHEOTHERISABOUTSTRONGLYCOUPLEDFUSIONMETHODSINTHEFIRSTCATEGORYOFFUSIONMETHODS,FUSIONOFDATAPRODUCEDBYSENSORYMODULESDOESNOTAFFECTTHEOPERATIONOFTHEMODULESONTHECONTRARY,FORSTRONGLYCOUPLEDFUSIONMETHODS,THEMODULESPRODUCINGTHEDATATOBEFUSEDAREBEINGAFFECTEDINSOMEWAYBYOTHERINFORMATIONFROMOTHERMODULESTHEDETAILEDREVIEWONCURRENTADVANCESINVISUALANDTHERMALFACERECOGNITIONISGIVENIN9SIMPLEIMAGEFUSIONINSPATIALDOMAINISDISCUSSEDIN10,WHEREFACERECOGNITIONISUSEDFORTESTINGTHEFUSIONOFFACEDATABASEIMAGESBOTHIMAGEFUSIONANDDECISIONFUSIONISEMPLOYEDIN11TOIMPROVETHEACCURACYOFTHEFACERECOGNITIONSYSTEMINTHISPAPER,WEPRESENTANEWAPPROACHTOTHEPROBLEMOFFACERECOGNITIONTHATREALIZESTHEFULLPOTENTIALOFFUSIONOFTHERMALIRBANDANDVISUALBANDIMAGESINTHISWORKATFIRSTTHERMALANDVISUALFACEIMAGESARECOMBINEDTOGETHERANDFUSEDIMAGEOFCORRESPONDINGTHERMALANDVISUALFACEIMAGESAREOBTAINEDAFTERTHATUSINGTHESETRANSFORMEDFUSEDIMAGESEIGENFACESARECOMPUTEDANDFINALLYTHOSEEIGENFACESTHUSFOUNDARECLASSIFIEDUSINGARADIALBASISFUNCTIONNEURALNETWORKINTHEFIRSTCASEANDINTHESECONDCASETHEEIGENFACESARECLASSIFIEDUSINGMULTILAYERPERCEPTRONTHEORGANIZATIONOFTHERESTOFTHISPAPERISASFOLLOWSINSECTIONII,THEOVERVIEWOFTHESYSTEMISDISCUSSED,INSECTIONIIIEXPERIMENTALRESULTSANDDISCUSSIONSAREGIVENFINALLY,SECTIONIVCONCLUDESTHISWORKIITHESYSTEMOVERVIEWINTHISWORKWEHAVEUSEDOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSDATABASEBENCHMARKTHERMALANDVISUALFACEIMAGESEVERYTHERMALFACEIMAGEANDTHECORRESPONDINGVISUALFACEIMAGEAREFIRSTCOMBINEDANDCONVERTEDINTOFUSEDIMAGETHESETRANSFORMEDIMAGESARESEPARATEDINTOTWOGROUPSNAMELYTRAININGANDTESTINGSETTHEEIGENSPACEISCOMPUTEDUSINGTRAININGIMAGESALLTHETRAININGANDTESTINGIMAGESAREPROJECTEDINTOTHECREATEDEIGENSPACEANDNAMEDASFUSEDEIGENFACESAFTERALLTHECONVERSIONSACLASSIFIERISUSEDTOCLASSIFYTHEMINFIRSTCASEARADIALBASISFUNCTIONNEURALNETWORKANDINSECONDCASEAMULTILAYERPERCEPTRONAREUSEDFORTHISPURPOSETHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1INTHISFIGUREDOTTEDLINESINDICATEFEEDBACKFROMDIFFERENTSTEPSTOTHEIRFIG1BLOCKDIAGRAMOFTHEPRESENTSYSTEMPREVIOUSSTEPSTOIMPROVETHEEFFICIENCYOFTHESYSTEMSATHERMALINFRAREDFACEIMAGESTHERMALINFRAREDFACEIMAGESAREFORMEDASAMAPOFTHEMAJORBLOODVESSELSPRESENTINTHEFACETHEREFORE,AFACERECOGNITIONSYSTEMDESIGNEDBASEDONTHERMALINFRAREDFACEIMAGESCANNOTBEEVADEDORFOOLEDBYFORGERY,ORDISGUISE,ASCANOCCURUSINGTHEVISIBLESPECTRUMFORFACIALRECOGNITIONCOMPAREDTOVISUALFACERECOGNITIONSYSTEMSTHISRECOGNITIONSYSTEMWILLBELESSVULNERABLETOVARYINGCONDITIONS,SUCHASHEADANGLE,EXPRESSION,ORLIGHTINGBIMAGEFUSIONTECHNIQUETHETASKOFINTERPRETINGIMAGES,EITHERVISUALIMAGESALONEORTHERMALIMAGESALONE,ISANUNCONSTRAINTPROBLEMTHETHERMALIMAGECANATBESTYIELDESTIMATESOFSURFACETEMPERATURETHAT,INGENERAL,ISNOTSPECIFICINDISTINGUISHINGBETWEENOBJECTCLASSESTHEFEATURESEXTRACTEDFROMVISUALINTENSITYIMAGESALSOLACKTHESPECIFICITYREQUIREDFORUNIQUELYDETERMININGTHEIDENTITYOFTHEIMAGEDOBJECTTHEINTERPRETATIONOFEACHTYPEOFIMAGETHUSLEADSTOAMBIGUOUSINFERENCESABOUTTHENATUREOFTHEOBJECTSINTHESCENETHEUSEOFTHERMALDATAGATHEREDBYANINFRAREDCAMERA,ALONGWITHTHEVISUALIMAGE,ISSEENASAWAYOFRESOLVINGSOMEOFTHESEAMBIGUITIESONTHEOTHERHAND,THERMALIMAGESAREOBTAINEDBYSENSINGRADIATIONINTHEINFRAREDSPECTRUMTHERADIATIONSENSEDISEITHEREMITTEDBYANOBJECTATANONZEROABSOLUTETEMPERATURE,ORREFLECTEDBYITTHEMECHANISMSTHATPRODUCETHERMALANDVISUALIMAGESAREDIFFERENTFROMEACHOTHERTHERMALIMAGEPRODUCEDBYANOBJECTSSURFACECANBEINTERPRETEDTOIDENTIFYTHESEMECHANISMSTHUS,THERMALIMAGESCANPROVIDEINFORMATIONABOUTTHEOBJECTBEINGIMAGEDWHICHISNOTAVAILABLEFROMAVISUALIMAGE8AGREATDEALOFEFFORTHASBEENEXPENDEDONAUTOMATEDSCENEANALYSISUSINGVISUALIMAGES,ANDSOMEWORKHASVISUALIMAGEEIGENSPACEPROJECTIONCLASSIFICATIONUSINGRADIALBASISFUNCTIONNEURALNETWORK/MULTILAYERPERCEPTIONCLASSESRECOGNITIONRESULTSTHERMALIMAGEPIXELFUSIONACADEMYPUBLISHERBEENDONEINRECOGNIZINGOBJECTSINASCENEUSINGINFRAREDIMAGESHOWEVER,THEREHASBEENLITTLEEFFORTONINTERPRETINGTHERMALIMAGESOFOUTDOORSCENESBASEDONASTUDYOFTHEMECHANISMTHATGIVESRISETOTHEDIFFERENCESINTHETHERMALBEHAVIOROFOBJECTSURFACESINTHESCENEALSO,NORHASBEENANYEFFORTBEENMADETOINTEGRATEINFORMATIONEXTRACTEDFROMTHETWOMODALITIESOFIMAGINGINOURMETHODTHEPROCESSOFIMAGEFUSIONISWHEREPIXELDATAOF70OFVISUALIMAGEAND30OFTHERMALIMAGEOFSAMECLASSORSAMEIMAGEISBROUGHTTOGETHERINTOACOMMONOPERATINGIMAGEORNOWCOMMONLYREFERREDTOASACOMMONRELEVANTOPERATINGPICTURECROP12THISIMPLIESTHATANADDITIONALDEGREEOFFILTERINGANDINTELLIGENCEISTOBEAPPLIEDTOTHEPIXELSTREAMSTOPRESENTPERTINENTINFORMATIONTOTHEUSERSOIMAGEPIXELFUSIONHASTHECAPACITYTOENABLESEAMLESSWORKINGINAHETEROGENEOUSWORKENVIRONMENTWITHMORECOMPLEXDATAFORACCURATEANDEFFECTIVEFACERECOGNITIONWEREQUIREMOREINFORMATIVEIMAGESIMAGEBYONESOURCEIETHERMALMAYLACKSOMEINFORMATIONWHICHMIGHTBEAVAILABLEINIMAGESBYOTHERSOURCEIEVISUALSOIFITBECOMESPOSSIBLETOCOMBINETHEFEATURESOFBOTHTHEVISUALANDTHERMALFACEIMAGESTHENEFFICIENT,ROBUST,ANDACCURATEFACERECOGNITIONCANBEDEVELOPEDWEDESCRIBEBELOWINDETAILTHEFUSIONSCHEMECONSIDEREDINTHISWORKWEASSUMETHATEACHFACEISREPRESENTEDBYAPAIROFIMAGES,ONEINTHEIRSPECTRUMANDONEINTHEVISIBLESPECTRUMBOTHIMAGESHAVEBEENCOMBINEDPRIORTOFUSIONTOENSURESIMILARRANGESOFVALUESWEFUSEDVISUALANDTHERMALIMAGESIDEALLY,THEFUSIONOFCOMMONPIXELSCANBEDONEBYPIXELWISEWEIGHTEDSUMMATIONOFVISUALANDTHERMALIMAGES9,ASBELOWFX,YAX,YVX,YBX,YTX,Y1WHEREFX,YISAFUSEDOUTPUTOFAVISUALIMAGE,VX,Y,ANDATHERMALIMAGE,TX,Y,WHILEAX,YANDBX,YREPRESENTTHEWEIGHTINGFACTORSFORVISUALANDTHERMALIMAGESRESPECTIVELYINTHISWORK,WEHAVECONSIDEREDAX,Y070ANDBX,Y030FIG2FUSIONTECHNIQUECEIGENFACESFORRECOGNITIONABCFIG3ATHERMALIMAGES,BVISUALIMAGES,CFUSEDIMAGESOFCORRESPONDINGTHERMALANDVISUALIMAGESINMATHEMATICALTERMS,WEWISHTOFINDPRINCIPALCOMPONENTS13,14,15OFTHEDISTRIBUTIONOFFACES,ORTHEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHESETOFFACEIMAGESTHESEEIGENVECTORSCANBETHOUGHTOFASSETOFFEATURESWHICHTOGETHERCHARACTERIZETHEVARIATIONSBETWEENFACEIMAGESEACHIMAGELOCATIONCONTRIBUTESMOREORLESSTOEACHEIGENVECTOR,SOTHATWECANDISPLAYTHEEIGENVECTORASSORTOFGHOSTLYFACEWHICHWECALLANEIGENFACEEACHFACEIMAGEINTHETRAININGSETCANBEPRESENTEDEXACTLYINTERMSOFALINEARCOMBINATIONOFTHEEIGENFACESTHENUMBEROFAPOSSIBLEEIGENFACESISEQUALTOTHENUMBEROFFACEIMAGESINTHETRAININGSETHOWEVERTHEFACESCANALSOBEAPPROXIMATEDUSINGONLYTHE“BEST“EIGENFACES,THOSETHATHAVETHELARGESTEIGENVALUESANDWHICHTHEREFOREACCOUNTFORTHEMOSTVARIANCEWITHINTHESETFACEIMAGESTHEBESTUEIGENFACESCONSTITUTEAUDIMENSIONALSUBSPACE,WHICHMAYBECALLEDAS“FACESPACE“OFALLPOSSIBLEIMAGESIDENTIFYINGIMAGESTHROUGHEIGENSPACEPROJECTIONTAKESTHREEBASICSTEPSFIRSTTHEEIGENSPACEMUSTBECREATEDUSINGTRAININGIMAGESAFTERTHATALLTHOSETRAININGIMAGESAREPROJECTEDINTOTHEEIGENSPACEANDCALLTHEMEIGENFACESTRAINACLASSIFIERUSINGTHESEEIGENFACESFINALLY,THETESTIMAGESAREIDENTIFIEDBYPROJECTINGTHEMINTOTHEEIGENSPACEANDCLASSIFYINGTHEMBYTHETRAINEDCLASSIFIERDANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT“INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGACADEMYPUBLISHEROFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKSECLASSIFICATIONOFFUSEDEIGENFACESUSINGRADIALBASISFUNCTIONNETWORK16NEURALNETWORKSHAVEBEENEMPLOYEDANDCOMPAREDTOCONVENTIONALCLASSIFIERSFORANUMBEROFCLASSIFICATIONPROBLEMSTHERESULTSHAVESHOWNTHATTHEACCURACYOFTHENEURALNETWORKAPPROACHESISEQUIVALENTTOORSLIGHTLYBETTERTHANOTHERMETHODSALSO,DUETOTHESIMPLICITY,GENERALITYANDGOODLEARNINGABILITYOFTHENEURALNETWORKS,THESETYPESOFCLASSIFIERSAREFOUNDTOBEMOREEFFICIENTRADIALBASISFUNCTIONRBFNEURALNETWORKSAREFOUNDTOBEVERYATTRACTIVEFORMANYENGINEERINGPROBLEMSBECAUSE1THEYAREUNIVERSALAPPROXIMATES,2THEYHAVEAVERYCOMPACTTOPOLOGYAND3THEIRLEARNINGSPEEDISVERYFASTBECAUSEOFTHEIRLOCALLYTUNEDNEURONSANIMPORTANTPROPERTYOFRBFNEURALNETWORKSISTHATTHEYFORMAUNIFYINGLINKBETWEENMANYDIFFERENTRESEARCHFIELDSSUCHASFUNCTIONAPPROXIMATION,REGULARIZATION,NOISYINTERPOLATIONANDPATTERNRECOGNITIONTHEREFORE,RBFNEURALNETWORKSSERVEASANEXCELLENTCANDIDATEFORPATTERNCLASSIFICATIONWHEREATTEMPTSHAVEBEENCARRIEDOUTTOMAKETHELEARNINGPROCESSINTHISTYPEOFCLASSIFICATIONFASTERTHANNORMALLYREQUIREDFORTHEMULTILAYERFEEDFORWARDNEURALNETWORKS17INTHISPAPER,ANRBFNEURALNETWORKISUSEDASACLASSIFIERINAFACERECOGNITIONSYSTEMWHERETHEINPUTSTOTHENEURALNETWORKAREFEATUREVECTORSDERIVEDFROMTHEPROPOSEDFEATUREEXTRACTIONTECHNIQUEDESCRIBEDINIIBGEOMETRICALLY,THEKEYIDEAOFANRBFNEURALNETWORKISTOPARTITIONTHEINPUTSPACEINTOANUMBEROFSUBSPACESWHICHAREINTHEFORMOFHYPERSPHERESACCORDINGLY,CLUSTERINGALGORITHMSKMEANSCLUSTERING,FUZZYKMEANSCLUSTERINGANDHIERARCHICALCLUSTERINGWHICHAREWIDELYUSEDINRBFNEURALNETWORKS18,19AREALOGICALAPPROACHESTOINITIALCENTERS18,20HOWEVER,ITMAYBENOTEDTHATTHESECLUSTERINGAPPROACHESAREINHERENTLYUNSUPERVISEDLEARNINGALGORITHMSASNOCATEGORYINFORMATIONABOUTPATTERNSISUSEDASANILLUSTRATIVEEXAMPLE,CONSIDERASIMPLETRAININGSETXK,YKILLUSTRATEDINFIG4THEBLACKANDWHITEDATAPOINTSREFLECTTHECORRESPONDINGVALUESASSUMEDBYTHEDEPENDENTVARIABLEYKIFWESIMPLYUSEKMEANSCLUSTERINGAPPROACHWITHOUTCONSIDERINGYK,TWOEVIDENTCLUSTERSASSHOWNINFIG4AAREACHIEVEDTHISBRINGSABOUTSIGNIFICANTMISCLASSIFICATIONINITIALLYALTHOUGHTHECLUSTERINGBOUNDARIESAREMODIFIEDINTHESUBSEQUENTLEARNINGPHASE,THISCOULDEASILYLEADTOANUNDESIREDANDHIGHLYDOMINANTAVERAGINGPHENOMENONASWELLASTOMAKETHELEARNINGLESSEFFECTIVE19TOPRESERVEHOMOGENEOUSCLUSTERS,THREECLUSTERSASDEPICTEDINFIG4BSHOULDBECREATEDINOTHERWORDS,ASUPERVISEDCLUSTERINGPROCEDUREWHICHTAKESINTOCONSIDERATIONTHECATEGORYINFORMATIONOFTRAININGDATASHOULDBECONSIDEREDABFIG4TWODIMENSIONALPATTERNSANDCLUSTERINGACONVENTIONALCLUSTERING,BCLUSTERINGWITHHOMOGENEOUSANALYSISFIG5EFFECTOFGAUSSIANWIDTHSINCLUSTERINGWHILECONSIDERINGTHECATEGORYINFORMATIONOFTRAININGPATTERNS,ITSHOULDBEEMPHASIZEDTHATTHECLASSMEMBERSHIPSARENOTONLYDEPENDEDONTHEDISTANCEOFPATTERNS,BUTALSODEPENDEDONTHEGAUSSIANWIDTHSASILLUSTRATEDINFIG5,PISNEARTOTHECENTEROFCLASSKINEUCLIDEANDISTANCE,BUTWECANSELECTDIFFERENTGAUSSIANWIDTHSFOREACHCLUSTERSOTHATTHEPOINTPHASGREATERCLASSMEMBERSHIPTOCLASSJTHANTHATTOCLASSKTHEREFORE,THEUSEOFCLASSMEMBERSHIPIMPLIESTHATWESHOULDPROPOSEASUPERVISEDPROCEDURETOCLUSTERTHETRAININGPATTERNSANDDETERMINETHEINITIALGAUSSIANWIDTHSIIIEXPERIMENTALRESULTSANDDISCUSSIONSTHISWORKHASBEENSIMULATEDUSINGMATLAB7FORCOMPARISONOFRESULTSEXPERIMENTSARECONDUCTEDFORFUSEDIMAGESATHOROUGHSYSTEMPERFORMANCEINVESTIGATION,WHICHCOVERSALLCONDITIONSOFHUMANFACERECOGNITION,HASBEENCONDUCTEDTHEYAREFACERECOGNITIONUNDERIVARIATIONSINSIZE,IIVARIATIONSINCLASSJCLASSKPACADEMYPUBLISHERLIGHTINGCONDITIONS,IIIVARIATIONSINFACIALEXPRESSIONS,IVVARIATIONSINPOSEWEFIRSTANALYZETHEPERFORMANCEOFOURALGORITHMUSINGOTCBVSDATABASEWHICHISASTANDARDBENCHMARKTHERMALANDVISUALFACEIMAGESFORFACERECOGNITIONTECHNOLOGIESAOTCBVSDATABASEOUREXPERIMENTSWEREPERFORMONTHEFACEDATABASEWHICHISOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSBENCHMARKDATABASECONTAINSASETOFTHERMALANDVISUALFACEIMAGESTHEREARE700IMAGESOFVISUALAND700THERMALIMAGESOF16DIFFERENTPERSONSFORSOMESUBJECT,THEIMAGESWERETAKENATDIFFERENTTIMESWHICHCONTAINQUITEAHIGHDEGREEOFVARIABILITYINLIGHTING,FACIALEXPRESSIONOPEN/CLOSEDEYES,SMILING/NONSMILINGETC,POSEUPRIGHT,FRONTALPOSITIONETCANDFACIALDETAILSGLASSES/NOGLASSESALLTHEIMAGESWERETAKENAGAINSTADARKHOMOGENEOUSBACKGROUNDWITHTHESUBJECTSINANDUPRIGHT,FONTALPOSITION,WITHTOLERANCEFORSOMETILTINGANDROTATIONOFUPTO20DEGREETHEVARIATIONINSCALEISUPTOABOUT10ALLTHEIMAGESINTHEDATABASEBCLASSIFICATIONOFFUSEDEIGENFACESUSINGRADIALBASISFUNCTIONNEURALNETWORKANDMULTILAYERPERCEPTRONOUTOFTOTAL700THERMALANDVISUALIMAGES400IMAGESARETAKENOUTOFWHICH200ARETHERMALIMAGESAND200AREVISUALIMAGESCOMBININGTHESETHERMALANDVISUALIMAGESWEGET200FUSEDIMAGES100OFTHESEIMAGESAREUSEDASTRAININGSETANDREST100IMAGESARETAKENASTESTINGIMAGESTHETRAININGSETCONTAINS10CLASSESWHICHMEANTHATEACHCLASSHAS10IMAGESNOW5IMAGESFROMONEPARTICULARCLASSWHICHARENOTUSEDASATRAININGIMAGEAND5MOREIMAGESOFTHEOTHERCLASSESARETAKENFROMTHETESTINGSETACCORDINGTOTHISPROCESSFORALLTHE10CLASSESWEGETTHERESULTSFORBOTHTHECASESIE,FORCLASSIFICATIONOFFUSEDEIGENFACESUSINGRBFNEURALNETWORKANDUSINGMULTILAYERPERCEPTRONNEURALNETWORKWHICHARESHOWNINFIG6BELOWFIG6COMPARISONBETWEENRBFANDMLPCLASSIFIERSFIG710NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS1WHICHISNOTUSEDINTRAININGFIG810NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS2WHICHISNOTUSEDINTRAININGFIG910NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS3WHICHISNOTUSEDINTRAININGINTHEGRAPHSHOWNINFIG6,THESOLIDLINESHOWSTHERESULTSOFEXPERIMENTSUSINGRBFNNANDTHEDASHEDLINESHOWSTHERESULTSOFEXPERIMENTSUSINGMLPNNSO,FROMTHEGRAPHWECANEASILYSAYTHATRBFNEURALNETWORKGIVESBETTERRESULTTHANMLPNEURALNETWORKINTHEABOVEFIGURESFROMFIG7TOFIG9WEHAVESHOWNTHEFUSEDIMAGESWHICHAREUSEDINTHETESTINGSETO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国氰乙酸甲酯项目投资计划书
- 2025年制冷空调设备相关项目运行指导方案
- 2025年中国三氯化铱项目商业计划书
- 服装实作考试题及答案
- 2025年木材检尺考试试题及答案
- 2025年国家司法考试考题及答案
- 供应链管理流程优化模板与工具集
- (2025)事业单位招聘公共基础知识考试题库及参考答案
- 经营单位(安全生产管理人员)考试题库及答案
- 2025年有机农业种养植基地建设项目可行性研究报告
- 二年级上册数学北师大版课件第5课时 小熊开店
- 跌倒坠床原因分析预防措施
- 52206马工程组织行为学课件
- 我和我的祖国课件
- 各类食物营养与配餐(蛋类的营养)课件
- 公司内账管理系统
- 全国细菌耐药监测网信息系统-附件
- 妇产科产前诊断技术服务临床医师考核题(附答案)
- 校园欺凌工作台账(完整资料)
- 第4章 酸碱和溶剂化学
- DB33∕T 1146-2018 浙江省城市轨道交通规范
评论
0/150
提交评论