




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ACADEMYPUBLISHERIMAGEPIXELFUSIONFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2,ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYSURYAMANINAGAR799130,TRIPURA,INDIAEMAILMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA700032,INDIAAICTEEMERITUSFELLOWEMAILDEBOTOSHINDIATIMESCOM,MITA_NASIPURI,DIPAKKBASUGMAILCOM,MKUNDUICSEJDVUACINABSTRACTINTHISPAPERWEPRESENTATECHNIQUEFORFUSIONOFOPTICALANDTHERMALFACEIMAGESBASEDONIMAGEPIXELFUSIONAPPROACHOUTOFSEVERALFACTORS,WHICHAFFECTFACERECOGNITIONPERFORMANCEINCASEOFVISUALIMAGES,ILLUMINATIONCHANGESAREASIGNIFICANTFACTORTHATNEEDSTOBEADDRESSEDTHERMALIMAGESAREBETTERINHANDLINGILLUMINATIONCONDITIONSBUTNOTVERYCONSISTENTINCAPTURINGTEXTUREDETAILSOFTHEFACESOTHERFACTORSLIKESUNGLASSES,BEARD,MOUSTACHEETCALSOPLAYACTIVEROLEINADDINGCOMPLICACIESTOTHERECOGNITIONPROCESSFUSIONOFTHERMALANDVISUALIMAGESISASOLUTIONTOOVERCOMETHEDRAWBACKSPRESENTINTHEINDIVIDUALTHERMALANDVISUALFACEIMAGESHEREFUSEDIMAGESAREPROJECTEDINTOANEIGENSPACEANDTHEPROJECTEDIMAGESARECLASSIFIEDUSINGARADIALBASISFUNCTIONRBFNEURALNETWORKANDALSOBYAMULTILAYERPERCEPTRONMLPINTHEEXPERIMENTSOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSDATABASEBENCHMARKFORTHERMALANDVISUALFACEIMAGESHAVEBEENUSEDCOMPARISONOFEXPERIMENTALRESULTSSHOWTHATTHEPROPOSEDAPPROACHPERFORMSSIGNIFICANTLYWELLINRECOGNIZINGFACEIMAGESWITHASUCCESSRATEOF96AND9507FORRBFNEURALNETWORKANDMLPRESPECTIVELYINDEXTERMSIMAGEPIXELFUSION,EIGENSPACEPROJECTION,RADIALBASISFUNCTIONNEURALNETWORK,MULTILAYERPERCEPTRON,FACERECOGNITIONIINTRODUCTIONHUMANFACERECOGNITIONHASALREADYESTABLISHEDITSACCEPTANCEASASUPERIORBIOMETRICMETHODFORIDENTIFICATIONANDAUTHENTICATIONPURPOSESITISTOUCHLESS,HIGHLYAUTOMATEDANDMOSTNATURALSINCEITCOINCIDESWITHTHEMODEOFRECOGNITIONTHATWEASHUMANSEMPLOYONOUREVERYDAYAFFAIRS1ITHASEMERGEDASAPREFERREDALTERNATIVETOTRADITIONALFORMSOFIDENTIFICATION,LIKECARDIDS,WHICHARENOTEMBEDDEDINTOONESPHYSICALCHARACTERISTICSRESEARCHINTOSEVERALBIOMETRICMODALITIESINCLUDINGFACE,FINGERPRINT,IRIS,ANDRETINARECOGNITIONHASPRODUCEDVARYINGDEGREESOFSUCCESS2ITHASMANYPRACTICALAPPLICATIONS,SUCHASBANKCARDIDENTIFICATION,ACCESSCONTROL,MUGSHOTSSEARCHING,SECURITYMONITORING,SURVEILLANCESYSTEMSETC3,4,5MOSTOFTHERESEARCHEFFORTSINTHISAREAHAVEFOCUSEDONVISIBLESPECTRUMIMAGINGANDGEOMETRICFEATUREEXTRACTIONDESPITETHESUCCESSOFAUTOMATICFACERECOGNITIONTECHNIQUESINMANYPRACTICALAPPLICATIONS,THETASKOFFACERECOGNITIONBASEDONLYONTHEVISIBLESPECTRUMISSTILLACHALLENGINGPROBLEMUNDERUNCONTROLLEDENVIRONMENTSTHECHALLENGESAREEVENMOREPROFOUNDWHENONECONSIDERSTHELARGEVARIATIONSINTHEVISUALSTIMULUSDUETOILLUMINATIONCONDITIONS,VIEWINGDIRECTIONSORPOSES,FACIALEXPRESSIONS,AGING,ANDDISGUISESSUCHASFACIALHAIR,GLASSES,ORCOSMETICSINTHISCONNECTION,THEREARETWOMAJORCHALLENGESVARIATIONSINILLUMINATIONANDPOSE6SUCHPROBLEMSAREQUITEUNAVOIDABLEINAPPLICATIONSSUCHASOUTDOORACCESSCONTROLANDSURVEILLANCEPERFORMANCEOFVISUALFACERECOGNITIONISSENSITIVETOVARIATIONSINILLUMINATIONCONDITIONSANDUSUALLYDEGRADESSIGNIFICANTLYWHENTHELIGHTINGISDIMORWHENITISNOTUNIFORMLYILLUMINATINGTHEFACETHECHANGESCAUSEDBYILLUMINATIONONTHESAMEINDIVIDUALAREOFTENLARGERTHANTHEDIFFERENCESBETWEENINDIVIDUALSVARIOUSALGORITHMSEGHISTOGRAMEQUALIZATION,DROPPINGLEADINGEIGENFACESETCFORCOMPENSATINGSUCHVARIATIONSHAVEBEENSTUDIEDWITHPARTIALSUCCESSTHESETECHNIQUESATTEMPTTOREDUCETHEWITHINCLASSVARIABILITYINTRODUCEDBYCHANGESINILLUMINATIONAVISUALFACERECOGNITIONSYSTEMOPTIMIZEDFORIDENTIFICATIONOFLIGHTSKINNEDPEOPLECOULDBEPRONETOHIGHERFALSEALARMSAMONGDARKSKINNEDPEOPLETHERMALIRIMAGERY7HASBEENSUGGESTEDASAVIABLEALTERNATIVEINDETECTINGDISGUISEDFACESANDHANDLINGSITUATIONSWHERETHEREISNOCONTROLOVERILLUMINATIONTHERMALIRIMAGESREPRESENTTHEHEATPATTERNSEMITTEDFROMANOBJECTOBJECTSEMITDIFFERENTAMOUNTSOFIRENERGYACCORDINGTOTHEIRBODYTEMPERATUREANDCHARACTERISTICSSINCE,VESSELSTRANSPORTWARMBLOODTHROUGHOUTTHEBODYTHETHERMALPATTERNSOFFACESAREDERIVEDPRIMARILYFROMTHEPATTERNOFBLOODVESSELSUNDERTHESKINTHEVEINANDTISSUESTRUCTUREOFTHEFACEISUNIQUEFOREACHPERSON,ANDTHEREFORETHEIRIMAGESAREALSOUNIQUEITISKNOWNTHATEVENIDENTICALTWINSHAVEDIFFERENTTHERMALPATTERNSFACERECOGNITIONBASEDONTHERMALIRSPECTRUMUTILIZESTHEANATOMICALINFORMATIONOFHUMANFACEASFEATURESUNIQUETOEACHINDIVIDUALWHILESACRIFICINGCOLORRECOGNITIONANATOMICALFEATURESOFFACESUSEFULFORIDENTIFICATIONCANBEMEASUREDATADISTANCEUSINGPASSIVEIRSENSORTECHNOLOGYWITHORWITHOUTTHECOOPERATIONOFTHESUBJECT6RECENTLY,RESEARCHERSHAVEINVESTIGATEDTHEUSEDATAFUSIONMETHODWHICHCOMBINESDIFFERENTTYPESOFDATAGATHEREDBYTHESIMULTANEOUSUSEOFSEVERALSENSINGMODALITIESTOGENERATEANEWTYPEOFDATAVARIOUSPERCEPTUALMECHANISMSINTEGRATETHESESENSESTOPRODUCEACADEMYPUBLISHERTHEINTERNALREPRESENTATIONOFTHESENSEDENVIRONMENTTHEINTEGRATIONTENDSTOBESYNERGISTICINTHESCENETHATINFORMATIONINFERREDFROMTHEPROCESSCANNOTBEOBTAINEDFROMANYPROPERSUBSETOFTHESENSEMODALITIESTHISPROPERTYOFSYNERGISMISONETHATSHOULDBESOUGHTFORWHENIMPLEMENTINGMULTISENSORINTEGRATIONFORMACHINEPERCEPTIONTHEPRINCIPALMOTIVATIONFORTHEFUSIONAPPROACHISTOEXPLOITSUCHSYNERGISMINTHETECHNIQUEFORCOMBINEDINTERPRETATIONOFIMAGESOBTAINEDFROMMULTIPLESENSORSRESEARCHWORKONFUSIONHASBEENCARRIEDOUTONLYFORLASTFEWYEARSFUSIONMETHODSCANBECLASSIFIEDINTOTWOCATEGORIESASSTATEDIN8ONEISABOUTWEAKLYCOUPLEDFUSIONMETHODS,ANDTHEOTHERISABOUTSTRONGLYCOUPLEDFUSIONMETHODSINTHEFIRSTCATEGORYOFFUSIONMETHODS,FUSIONOFDATAPRODUCEDBYSENSORYMODULESDOESNOTAFFECTTHEOPERATIONOFTHEMODULESONTHECONTRARY,FORSTRONGLYCOUPLEDFUSIONMETHODS,THEMODULESPRODUCINGTHEDATATOBEFUSEDAREBEINGAFFECTEDINSOMEWAYBYOTHERINFORMATIONFROMOTHERMODULESTHEDETAILEDREVIEWONCURRENTADVANCESINVISUALANDTHERMALFACERECOGNITIONISGIVENIN9SIMPLEIMAGEFUSIONINSPATIALDOMAINISDISCUSSEDIN10,WHEREFACERECOGNITIONISUSEDFORTESTINGTHEFUSIONOFFACEDATABASEIMAGESBOTHIMAGEFUSIONANDDECISIONFUSIONISEMPLOYEDIN11TOIMPROVETHEACCURACYOFTHEFACERECOGNITIONSYSTEMINTHISPAPER,WEPRESENTANEWAPPROACHTOTHEPROBLEMOFFACERECOGNITIONTHATREALIZESTHEFULLPOTENTIALOFFUSIONOFTHERMALIRBANDANDVISUALBANDIMAGESINTHISWORKATFIRSTTHERMALANDVISUALFACEIMAGESARECOMBINEDTOGETHERANDFUSEDIMAGEOFCORRESPONDINGTHERMALANDVISUALFACEIMAGESAREOBTAINEDAFTERTHATUSINGTHESETRANSFORMEDFUSEDIMAGESEIGENFACESARECOMPUTEDANDFINALLYTHOSEEIGENFACESTHUSFOUNDARECLASSIFIEDUSINGARADIALBASISFUNCTIONNEURALNETWORKINTHEFIRSTCASEANDINTHESECONDCASETHEEIGENFACESARECLASSIFIEDUSINGMULTILAYERPERCEPTRONTHEORGANIZATIONOFTHERESTOFTHISPAPERISASFOLLOWSINSECTIONII,THEOVERVIEWOFTHESYSTEMISDISCUSSED,INSECTIONIIIEXPERIMENTALRESULTSANDDISCUSSIONSAREGIVENFINALLY,SECTIONIVCONCLUDESTHISWORKIITHESYSTEMOVERVIEWINTHISWORKWEHAVEUSEDOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSDATABASEBENCHMARKTHERMALANDVISUALFACEIMAGESEVERYTHERMALFACEIMAGEANDTHECORRESPONDINGVISUALFACEIMAGEAREFIRSTCOMBINEDANDCONVERTEDINTOFUSEDIMAGETHESETRANSFORMEDIMAGESARESEPARATEDINTOTWOGROUPSNAMELYTRAININGANDTESTINGSETTHEEIGENSPACEISCOMPUTEDUSINGTRAININGIMAGESALLTHETRAININGANDTESTINGIMAGESAREPROJECTEDINTOTHECREATEDEIGENSPACEANDNAMEDASFUSEDEIGENFACESAFTERALLTHECONVERSIONSACLASSIFIERISUSEDTOCLASSIFYTHEMINFIRSTCASEARADIALBASISFUNCTIONNEURALNETWORKANDINSECONDCASEAMULTILAYERPERCEPTRONAREUSEDFORTHISPURPOSETHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1INTHISFIGUREDOTTEDLINESINDICATEFEEDBACKFROMDIFFERENTSTEPSTOTHEIRFIG1BLOCKDIAGRAMOFTHEPRESENTSYSTEMPREVIOUSSTEPSTOIMPROVETHEEFFICIENCYOFTHESYSTEMSATHERMALINFRAREDFACEIMAGESTHERMALINFRAREDFACEIMAGESAREFORMEDASAMAPOFTHEMAJORBLOODVESSELSPRESENTINTHEFACETHEREFORE,AFACERECOGNITIONSYSTEMDESIGNEDBASEDONTHERMALINFRAREDFACEIMAGESCANNOTBEEVADEDORFOOLEDBYFORGERY,ORDISGUISE,ASCANOCCURUSINGTHEVISIBLESPECTRUMFORFACIALRECOGNITIONCOMPAREDTOVISUALFACERECOGNITIONSYSTEMSTHISRECOGNITIONSYSTEMWILLBELESSVULNERABLETOVARYINGCONDITIONS,SUCHASHEADANGLE,EXPRESSION,ORLIGHTINGBIMAGEFUSIONTECHNIQUETHETASKOFINTERPRETINGIMAGES,EITHERVISUALIMAGESALONEORTHERMALIMAGESALONE,ISANUNCONSTRAINTPROBLEMTHETHERMALIMAGECANATBESTYIELDESTIMATESOFSURFACETEMPERATURETHAT,INGENERAL,ISNOTSPECIFICINDISTINGUISHINGBETWEENOBJECTCLASSESTHEFEATURESEXTRACTEDFROMVISUALINTENSITYIMAGESALSOLACKTHESPECIFICITYREQUIREDFORUNIQUELYDETERMININGTHEIDENTITYOFTHEIMAGEDOBJECTTHEINTERPRETATIONOFEACHTYPEOFIMAGETHUSLEADSTOAMBIGUOUSINFERENCESABOUTTHENATUREOFTHEOBJECTSINTHESCENETHEUSEOFTHERMALDATAGATHEREDBYANINFRAREDCAMERA,ALONGWITHTHEVISUALIMAGE,ISSEENASAWAYOFRESOLVINGSOMEOFTHESEAMBIGUITIESONTHEOTHERHAND,THERMALIMAGESAREOBTAINEDBYSENSINGRADIATIONINTHEINFRAREDSPECTRUMTHERADIATIONSENSEDISEITHEREMITTEDBYANOBJECTATANONZEROABSOLUTETEMPERATURE,ORREFLECTEDBYITTHEMECHANISMSTHATPRODUCETHERMALANDVISUALIMAGESAREDIFFERENTFROMEACHOTHERTHERMALIMAGEPRODUCEDBYANOBJECTSSURFACECANBEINTERPRETEDTOIDENTIFYTHESEMECHANISMSTHUS,THERMALIMAGESCANPROVIDEINFORMATIONABOUTTHEOBJECTBEINGIMAGEDWHICHISNOTAVAILABLEFROMAVISUALIMAGE8AGREATDEALOFEFFORTHASBEENEXPENDEDONAUTOMATEDSCENEANALYSISUSINGVISUALIMAGES,ANDSOMEWORKHASVISUALIMAGEEIGENSPACEPROJECTIONCLASSIFICATIONUSINGRADIALBASISFUNCTIONNEURALNETWORK/MULTILAYERPERCEPTIONCLASSESRECOGNITIONRESULTSTHERMALIMAGEPIXELFUSIONACADEMYPUBLISHERBEENDONEINRECOGNIZINGOBJECTSINASCENEUSINGINFRAREDIMAGESHOWEVER,THEREHASBEENLITTLEEFFORTONINTERPRETINGTHERMALIMAGESOFOUTDOORSCENESBASEDONASTUDYOFTHEMECHANISMTHATGIVESRISETOTHEDIFFERENCESINTHETHERMALBEHAVIOROFOBJECTSURFACESINTHESCENEALSO,NORHASBEENANYEFFORTBEENMADETOINTEGRATEINFORMATIONEXTRACTEDFROMTHETWOMODALITIESOFIMAGINGINOURMETHODTHEPROCESSOFIMAGEFUSIONISWHEREPIXELDATAOF70OFVISUALIMAGEAND30OFTHERMALIMAGEOFSAMECLASSORSAMEIMAGEISBROUGHTTOGETHERINTOACOMMONOPERATINGIMAGEORNOWCOMMONLYREFERREDTOASACOMMONRELEVANTOPERATINGPICTURECROP12THISIMPLIESTHATANADDITIONALDEGREEOFFILTERINGANDINTELLIGENCEISTOBEAPPLIEDTOTHEPIXELSTREAMSTOPRESENTPERTINENTINFORMATIONTOTHEUSERSOIMAGEPIXELFUSIONHASTHECAPACITYTOENABLESEAMLESSWORKINGINAHETEROGENEOUSWORKENVIRONMENTWITHMORECOMPLEXDATAFORACCURATEANDEFFECTIVEFACERECOGNITIONWEREQUIREMOREINFORMATIVEIMAGESIMAGEBYONESOURCEIETHERMALMAYLACKSOMEINFORMATIONWHICHMIGHTBEAVAILABLEINIMAGESBYOTHERSOURCEIEVISUALSOIFITBECOMESPOSSIBLETOCOMBINETHEFEATURESOFBOTHTHEVISUALANDTHERMALFACEIMAGESTHENEFFICIENT,ROBUST,ANDACCURATEFACERECOGNITIONCANBEDEVELOPEDWEDESCRIBEBELOWINDETAILTHEFUSIONSCHEMECONSIDEREDINTHISWORKWEASSUMETHATEACHFACEISREPRESENTEDBYAPAIROFIMAGES,ONEINTHEIRSPECTRUMANDONEINTHEVISIBLESPECTRUMBOTHIMAGESHAVEBEENCOMBINEDPRIORTOFUSIONTOENSURESIMILARRANGESOFVALUESWEFUSEDVISUALANDTHERMALIMAGESIDEALLY,THEFUSIONOFCOMMONPIXELSCANBEDONEBYPIXELWISEWEIGHTEDSUMMATIONOFVISUALANDTHERMALIMAGES9,ASBELOWFX,YAX,YVX,YBX,YTX,Y1WHEREFX,YISAFUSEDOUTPUTOFAVISUALIMAGE,VX,Y,ANDATHERMALIMAGE,TX,Y,WHILEAX,YANDBX,YREPRESENTTHEWEIGHTINGFACTORSFORVISUALANDTHERMALIMAGESRESPECTIVELYINTHISWORK,WEHAVECONSIDEREDAX,Y070ANDBX,Y030FIG2FUSIONTECHNIQUECEIGENFACESFORRECOGNITIONABCFIG3ATHERMALIMAGES,BVISUALIMAGES,CFUSEDIMAGESOFCORRESPONDINGTHERMALANDVISUALIMAGESINMATHEMATICALTERMS,WEWISHTOFINDPRINCIPALCOMPONENTS13,14,15OFTHEDISTRIBUTIONOFFACES,ORTHEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHESETOFFACEIMAGESTHESEEIGENVECTORSCANBETHOUGHTOFASSETOFFEATURESWHICHTOGETHERCHARACTERIZETHEVARIATIONSBETWEENFACEIMAGESEACHIMAGELOCATIONCONTRIBUTESMOREORLESSTOEACHEIGENVECTOR,SOTHATWECANDISPLAYTHEEIGENVECTORASSORTOFGHOSTLYFACEWHICHWECALLANEIGENFACEEACHFACEIMAGEINTHETRAININGSETCANBEPRESENTEDEXACTLYINTERMSOFALINEARCOMBINATIONOFTHEEIGENFACESTHENUMBEROFAPOSSIBLEEIGENFACESISEQUALTOTHENUMBEROFFACEIMAGESINTHETRAININGSETHOWEVERTHEFACESCANALSOBEAPPROXIMATEDUSINGONLYTHE“BEST“EIGENFACES,THOSETHATHAVETHELARGESTEIGENVALUESANDWHICHTHEREFOREACCOUNTFORTHEMOSTVARIANCEWITHINTHESETFACEIMAGESTHEBESTUEIGENFACESCONSTITUTEAUDIMENSIONALSUBSPACE,WHICHMAYBECALLEDAS“FACESPACE“OFALLPOSSIBLEIMAGESIDENTIFYINGIMAGESTHROUGHEIGENSPACEPROJECTIONTAKESTHREEBASICSTEPSFIRSTTHEEIGENSPACEMUSTBECREATEDUSINGTRAININGIMAGESAFTERTHATALLTHOSETRAININGIMAGESAREPROJECTEDINTOTHEEIGENSPACEANDCALLTHEMEIGENFACESTRAINACLASSIFIERUSINGTHESEEIGENFACESFINALLY,THETESTIMAGESAREIDENTIFIEDBYPROJECTINGTHEMINTOTHEEIGENSPACEANDCLASSIFYINGTHEMBYTHETRAINEDCLASSIFIERDANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT“INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGACADEMYPUBLISHEROFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKSECLASSIFICATIONOFFUSEDEIGENFACESUSINGRADIALBASISFUNCTIONNETWORK16NEURALNETWORKSHAVEBEENEMPLOYEDANDCOMPAREDTOCONVENTIONALCLASSIFIERSFORANUMBEROFCLASSIFICATIONPROBLEMSTHERESULTSHAVESHOWNTHATTHEACCURACYOFTHENEURALNETWORKAPPROACHESISEQUIVALENTTOORSLIGHTLYBETTERTHANOTHERMETHODSALSO,DUETOTHESIMPLICITY,GENERALITYANDGOODLEARNINGABILITYOFTHENEURALNETWORKS,THESETYPESOFCLASSIFIERSAREFOUNDTOBEMOREEFFICIENTRADIALBASISFUNCTIONRBFNEURALNETWORKSAREFOUNDTOBEVERYATTRACTIVEFORMANYENGINEERINGPROBLEMSBECAUSE1THEYAREUNIVERSALAPPROXIMATES,2THEYHAVEAVERYCOMPACTTOPOLOGYAND3THEIRLEARNINGSPEEDISVERYFASTBECAUSEOFTHEIRLOCALLYTUNEDNEURONSANIMPORTANTPROPERTYOFRBFNEURALNETWORKSISTHATTHEYFORMAUNIFYINGLINKBETWEENMANYDIFFERENTRESEARCHFIELDSSUCHASFUNCTIONAPPROXIMATION,REGULARIZATION,NOISYINTERPOLATIONANDPATTERNRECOGNITIONTHEREFORE,RBFNEURALNETWORKSSERVEASANEXCELLENTCANDIDATEFORPATTERNCLASSIFICATIONWHEREATTEMPTSHAVEBEENCARRIEDOUTTOMAKETHELEARNINGPROCESSINTHISTYPEOFCLASSIFICATIONFASTERTHANNORMALLYREQUIREDFORTHEMULTILAYERFEEDFORWARDNEURALNETWORKS17INTHISPAPER,ANRBFNEURALNETWORKISUSEDASACLASSIFIERINAFACERECOGNITIONSYSTEMWHERETHEINPUTSTOTHENEURALNETWORKAREFEATUREVECTORSDERIVEDFROMTHEPROPOSEDFEATUREEXTRACTIONTECHNIQUEDESCRIBEDINIIBGEOMETRICALLY,THEKEYIDEAOFANRBFNEURALNETWORKISTOPARTITIONTHEINPUTSPACEINTOANUMBEROFSUBSPACESWHICHAREINTHEFORMOFHYPERSPHERESACCORDINGLY,CLUSTERINGALGORITHMSKMEANSCLUSTERING,FUZZYKMEANSCLUSTERINGANDHIERARCHICALCLUSTERINGWHICHAREWIDELYUSEDINRBFNEURALNETWORKS18,19AREALOGICALAPPROACHESTOINITIALCENTERS18,20HOWEVER,ITMAYBENOTEDTHATTHESECLUSTERINGAPPROACHESAREINHERENTLYUNSUPERVISEDLEARNINGALGORITHMSASNOCATEGORYINFORMATIONABOUTPATTERNSISUSEDASANILLUSTRATIVEEXAMPLE,CONSIDERASIMPLETRAININGSETXK,YKILLUSTRATEDINFIG4THEBLACKANDWHITEDATAPOINTSREFLECTTHECORRESPONDINGVALUESASSUMEDBYTHEDEPENDENTVARIABLEYKIFWESIMPLYUSEKMEANSCLUSTERINGAPPROACHWITHOUTCONSIDERINGYK,TWOEVIDENTCLUSTERSASSHOWNINFIG4AAREACHIEVEDTHISBRINGSABOUTSIGNIFICANTMISCLASSIFICATIONINITIALLYALTHOUGHTHECLUSTERINGBOUNDARIESAREMODIFIEDINTHESUBSEQUENTLEARNINGPHASE,THISCOULDEASILYLEADTOANUNDESIREDANDHIGHLYDOMINANTAVERAGINGPHENOMENONASWELLASTOMAKETHELEARNINGLESSEFFECTIVE19TOPRESERVEHOMOGENEOUSCLUSTERS,THREECLUSTERSASDEPICTEDINFIG4BSHOULDBECREATEDINOTHERWORDS,ASUPERVISEDCLUSTERINGPROCEDUREWHICHTAKESINTOCONSIDERATIONTHECATEGORYINFORMATIONOFTRAININGDATASHOULDBECONSIDEREDABFIG4TWODIMENSIONALPATTERNSANDCLUSTERINGACONVENTIONALCLUSTERING,BCLUSTERINGWITHHOMOGENEOUSANALYSISFIG5EFFECTOFGAUSSIANWIDTHSINCLUSTERINGWHILECONSIDERINGTHECATEGORYINFORMATIONOFTRAININGPATTERNS,ITSHOULDBEEMPHASIZEDTHATTHECLASSMEMBERSHIPSARENOTONLYDEPENDEDONTHEDISTANCEOFPATTERNS,BUTALSODEPENDEDONTHEGAUSSIANWIDTHSASILLUSTRATEDINFIG5,PISNEARTOTHECENTEROFCLASSKINEUCLIDEANDISTANCE,BUTWECANSELECTDIFFERENTGAUSSIANWIDTHSFOREACHCLUSTERSOTHATTHEPOINTPHASGREATERCLASSMEMBERSHIPTOCLASSJTHANTHATTOCLASSKTHEREFORE,THEUSEOFCLASSMEMBERSHIPIMPLIESTHATWESHOULDPROPOSEASUPERVISEDPROCEDURETOCLUSTERTHETRAININGPATTERNSANDDETERMINETHEINITIALGAUSSIANWIDTHSIIIEXPERIMENTALRESULTSANDDISCUSSIONSTHISWORKHASBEENSIMULATEDUSINGMATLAB7FORCOMPARISONOFRESULTSEXPERIMENTSARECONDUCTEDFORFUSEDIMAGESATHOROUGHSYSTEMPERFORMANCEINVESTIGATION,WHICHCOVERSALLCONDITIONSOFHUMANFACERECOGNITION,HASBEENCONDUCTEDTHEYAREFACERECOGNITIONUNDERIVARIATIONSINSIZE,IIVARIATIONSINCLASSJCLASSKPACADEMYPUBLISHERLIGHTINGCONDITIONS,IIIVARIATIONSINFACIALEXPRESSIONS,IVVARIATIONSINPOSEWEFIRSTANALYZETHEPERFORMANCEOFOURALGORITHMUSINGOTCBVSDATABASEWHICHISASTANDARDBENCHMARKTHERMALANDVISUALFACEIMAGESFORFACERECOGNITIONTECHNOLOGIESAOTCBVSDATABASEOUREXPERIMENTSWEREPERFORMONTHEFACEDATABASEWHICHISOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSBENCHMARKDATABASECONTAINSASETOFTHERMALANDVISUALFACEIMAGESTHEREARE700IMAGESOFVISUALAND700THERMALIMAGESOF16DIFFERENTPERSONSFORSOMESUBJECT,THEIMAGESWERETAKENATDIFFERENTTIMESWHICHCONTAINQUITEAHIGHDEGREEOFVARIABILITYINLIGHTING,FACIALEXPRESSIONOPEN/CLOSEDEYES,SMILING/NONSMILINGETC,POSEUPRIGHT,FRONTALPOSITIONETCANDFACIALDETAILSGLASSES/NOGLASSESALLTHEIMAGESWERETAKENAGAINSTADARKHOMOGENEOUSBACKGROUNDWITHTHESUBJECTSINANDUPRIGHT,FONTALPOSITION,WITHTOLERANCEFORSOMETILTINGANDROTATIONOFUPTO20DEGREETHEVARIATIONINSCALEISUPTOABOUT10ALLTHEIMAGESINTHEDATABASEBCLASSIFICATIONOFFUSEDEIGENFACESUSINGRADIALBASISFUNCTIONNEURALNETWORKANDMULTILAYERPERCEPTRONOUTOFTOTAL700THERMALANDVISUALIMAGES400IMAGESARETAKENOUTOFWHICH200ARETHERMALIMAGESAND200AREVISUALIMAGESCOMBININGTHESETHERMALANDVISUALIMAGESWEGET200FUSEDIMAGES100OFTHESEIMAGESAREUSEDASTRAININGSETANDREST100IMAGESARETAKENASTESTINGIMAGESTHETRAININGSETCONTAINS10CLASSESWHICHMEANTHATEACHCLASSHAS10IMAGESNOW5IMAGESFROMONEPARTICULARCLASSWHICHARENOTUSEDASATRAININGIMAGEAND5MOREIMAGESOFTHEOTHERCLASSESARETAKENFROMTHETESTINGSETACCORDINGTOTHISPROCESSFORALLTHE10CLASSESWEGETTHERESULTSFORBOTHTHECASESIE,FORCLASSIFICATIONOFFUSEDEIGENFACESUSINGRBFNEURALNETWORKANDUSINGMULTILAYERPERCEPTRONNEURALNETWORKWHICHARESHOWNINFIG6BELOWFIG6COMPARISONBETWEENRBFANDMLPCLASSIFIERSFIG710NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS1WHICHISNOTUSEDINTRAININGFIG810NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS2WHICHISNOTUSEDINTRAININGFIG910NUMBERSOFFUSEDIMAGESUSEDASTHETESTINGSETOFCLASS3WHICHISNOTUSEDINTRAININGINTHEGRAPHSHOWNINFIG6,THESOLIDLINESHOWSTHERESULTSOFEXPERIMENTSUSINGRBFNNANDTHEDASHEDLINESHOWSTHERESULTSOFEXPERIMENTSUSINGMLPNNSO,FROMTHEGRAPHWECANEASILYSAYTHATRBFNEURALNETWORKGIVESBETTERRESULTTHANMLPNEURALNETWORKINTHEABOVEFIGURESFROMFIG7TOFIG9WEHAVESHOWNTHEFUSEDIMAGESWHICHAREUSEDINTHETESTINGSETO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防水安装轻工合同范本
- 销售股份分配协议书范本
- 铺位买卖合同协议书模板
- 玉米采购合同协议书模板
- 淄博的公寓租房合同范本
- 洒水车供水协议合同范本
- 粉剂混合机转让合同范本
- 煤矿企业劳动合同协议书
- 电梯安装使用安全协议书
- 销售员劳动合同附加协议
- 运输供应商年度评价表
- 化学品安全技术说明书MSDS(液氨)
- 全国初中音乐优质课说课大赛一等奖《走进影视歌曲音乐》说课课件
- 境外安全风险管理培训课件
- 住宿流水单免费模板
- 北京大学金融伦理学 (3)课件
- BWD3K130干式变压器温控器说明书
- 公司引进战略投资者计划书课件
- 六西格玛黑带C阶段考试题
- HoloSens IVS3800智能视频存储介绍
- HSE管理体系审核员培训考核测试试卷
评论
0/150
提交评论