




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FUSIONOFDAUBECHIESWAVELETCOEFFICIENTSFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2,ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYSURYAMANINAGAR799130,TRIPURA,INDIAEMAILMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA700032,INDIAAICTEEMERITUSFELLOWEMAILDEBOTOSHINDIATIMESCOM,MITANASIPURI,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTINTHISPAPERFUSIONOFVISUALANDTHERMALIMAGESINWAVELETTRANSFORMEDDOMAINHASBEENPRESENTEDHERE,DAUBECHIESWAVELETTRANSFORM,CALLEDASD2,COEFFICIENTSFROMVISUALANDCORRESPONDINGCOEFFICIENTSCOMPUTEDINTHESAMEMANNERFROMTHERMALIMAGESARECOMBINEDTOGETFUSEDCOEFFICIENTSAFTERDECOMPOSITIONUPTOFIFTHLEVELLEVEL5FUSIONOFCOEFFICIENTSISDONEINVERSEDAUBECHIESWAVELETTRANSFORMOFTHOSECOEFFICIENTSGIVESUSFUSEDFACEIMAGESTHEMAINADVANTAGEOFUSINGWAVELETTRANSFORMISTHATITISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONFUSEDIMAGESTHUSFOUNDAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORREDUCTIONOFDIMENSIONSANDTHENTHOSEREDUCEDFUSEDIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONFOREXPERIMENTSIRISTHERMAL/VISUALFACEDATABASEWASUSEDEXPERIMENTALRESULTSSHOWTHATTHEPERFORMANCEOFTHEAPPROACHPRESENTEDHEREACHIEVESMAXIMUMSUCCESSRATEOF100INMANYCASESINDEXTERMSTHERMALIMAGE,DAUBECHIESWAVELETTRANSFORM,FUSION,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRON,CLASSIFICATIONIINTRODUCTIONMANYMETHODSHAVEBEENPROPOSEDFORFACERECOGNITIONFUSIONOFIMAGESEXPLOITSSYNERGISTICINTEGRATIONOFIMAGESOBTAINEDFROMMULTIPLESENSORSANDBYTHATITCANGATHERDATAINDIFFERENTFORMSLIKEAPPEARANCEANDANATOMICALINFORMATIONOFTHEFACE,WHICHENRICHESTHESYSTEMINIMPROVINGRECOGNITIONACCURACY9ASAMATTEROFFACTFUSIONOFIMAGESHASALREADYESTABLISHEDITSIMPORTANCEINCASEOFIMAGEANALYSIS,RECOGNITION,ANDCLASSIFICATIONFORINSTANCE,AGLIKAGYAOUROVAETAL10TRIEDTOIMPLEMENTEDPIXELBASEDFUSIONSCHEMEINTHEWAVELETDOMAIN,ANDFEATUREBASEDFUSIONINTHEEIGENSPACEDOMAINALTHOUGHTHEIRFUSIONAPPROACHWASNOTABLETOFULLYDISCOUNTILLUMINATIONEFFECTSPRESENTINTHEVISIBLEIMAGESBUTTHEYSHOWEDSUBSTANTIALIMPROVEMENTSINOVERALLRECOGNITIONPERFORMANCETHEYALSOINDICATEDTHATIRBASEDRECOGNITIONPERFORMANCEDEGRADESSERIOUSLYWHENEYEGLASSESAREPRESENTINTHEPROBEIMAGEBUTNOTINTHEGALLERYIMAGEANDVICEVERSAONTHEOTHERHANDFORTHEIMPROVEMENTOFTHEPERFORMANCEOFFACERECOGNITIONWHENFACEIMAGESAREOCCLUDEDBYWEARINGEYEGLASSES,JEONGSEONPARKETAL11FIRSTDETECTTHEREGIONSOCCLUDEDBYTHEGLASSESANDGENERATEANATURALLOOKINGFACIALIMAGEWITHOUTGLASSESBYRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONTHEYPROPOSEDANEWGLASSESREMOVALMETHODBASEDONRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONGEORGEBEBISETAL12INVESTIGATEDTHATTWODIFFERENTFUSIONSCHEMESLIKEFIRSTONEISPIXELBASEDANDOPERATESINTHEWAVELETDOMAINUSINGHAARTRANSFORMS,WHILETHESECONDONEISFEATUREBASEDANDOPERATESINTHEEIGENSPACEDOMAININBOTHCASES,THEYEMPLOYASIMPLEANDGENERALFRAMEWORKBASEDONGENETICALGORITHMSGASTOFINDANOPTIMUMFUSIONSTRATEGYAMITARANETAL13DEMONSTRATEDTHESPECTRALBANDINVARIANTWAVEMACHFILTERSWHICHAREDESIGNEDUSINGIMAGESOFCCD/IRCAMERAFUSEDBYDAUBECHIESWAVELETTRANSFORMANDIMPLEMENTEDINHYBRIDDIGITALOPTICALCORRELATORARCHITECTURETOIDENTIFYMULTIPLETARGETSINASCENETHEYHAVEFUSIONOFINFRAREDANDCCDCAMERABECAUSETHEPERFORMANCEOFCCDCAMERAISBETTERUNDERGOODILLUMINATIONCONDITIONSWHEREASIRCAMERAGIVESABETTEROUTPUTUNDERPOORILLUMINATIONORINTHENIGHTCONDITIONSALSOTHEAUTHORSIN14PROPOSEDDATAFUSIONOFVISUALANDTHERMALIMAGESUSINGGABORFILTERINGTECHNIQUEWHICHEXTRACTSFACIALFEATURES,AREUSEDASAFACERECOGNITIONTECHNIQUEITHASBEENFOUNDTHATBYUSINGTHEPROPOSEDFUSIONTECHNIQUEGABORFILTERCANRECOGNIZEFACEEVENWITHVARIABLEEXPRESSIONSANDLIGHTINTENSITIES,BUTNOTINEXTREMECONDITIONDIEGOASOCOLINSKYANDANDREASELINGER15CONSIDEREDOUTDOORANDINDOORIMAGINGCONDITIONSFORTHERMALIMAGING,ANDONEOFFEWTODOSOEVENFORVISIBLEFACERECOGNITIONITISCLEARFROMTHEIREXPERIMENTSTHATFACERECOGNITIONOUTDOORSWITHVISIBLEIMAGERYISFARLESSACCURATETHANWHENPERFORMEDUNDERFAIRLYCONTROLLEDINDOORCONDITIONSFOROUTDOORUSE,THERMALIMAGINGPROVIDESUSWITHACONSIDERABLEPERFORMANCEBOOSTTHERMALRECOGNITIONPERFORMANCESUFFERSAMODERATEDECAYWHENPERFORMEDOUTSIDEAGAINSTANINDOORENROLLMENTSET,PROBABLYASARESULTOFENVIRONMENTALCHANGESJINGUHEOETAL16DESCRIBESCOMPARISONRESULTSONTHREEFUSIONBASEDFACERECOGNITIONTECHNIQUESLIKEDATAFUSIONOFVISUALANDTHERMALIMAGESDF,DECISIONFUSIONWITHHIGHESTMATCHINGSCOREFH,ANDDECISIONFUSIONWITHAVERAGEMATCHINGSCOREFAANDSHOWEDTHATFUSIONBASEDFACERECOGNITIONTECHNIQUESOUTPERFORMEDINDIVIDUALVISUALANDTHERMALFACERECOGNIZERSUNDERILLUMINATIONVARIATIONSANDFACIALEXPRESSIONSFROMTHEMDECISIONFUSIONWITHAVERAGEMATCHINGSCORECONSISTENTLYDEMONSTRATEDSUPERIORRECOGNITIONACCURACIESASPERTHEIRRESULTSIOANNISPAVLIDISANDPETERSYMOSEK17DEMONSTRATEDATHEORETICALANDEXPERIMENTALARGUMENTTHATADUALBANDUPPERANDLOWERBANDFUSIONSYSTEMINTHENEARINFRAREDCANSEGMENTHUMANFACESMUCHMOREACCURATELYTHANTRADITIONALVISIBLEBANDDISGUISEFACEDETECTIONSYSTEMSDIEGOASOCOLINSKYANDANDREASELINGER18PERFORMEDACLEARANALYSISTHATLWIRIMAGERYOFHUMANFACESISNOTONLYAVALIDBIOMETRIC,BUTALMOSTSURELYASUPERIORONETOCOMPARABLEVISIBLEIMAGERYXINCHEN,PATRICKJFLYNNANDKEVINWBOWYER19SHOWEDTHATTHECOMBINATIONOFIRPLUSVISIBLECANOUTPERFORMEITHERIRORVISIBLEALONETHEYFINDACOMBINATIONMETHODTHATCONSIDERSTHEDISTANCEVALUESPERFORMSBETTERTHANONETHATONLYCONSIDERSRANKSCHRISTOPHERKEVELANDETAL20INTRODUCEDAMETHODOLOGYFORTRACKINGHUMANFACESINCALIBRATEDTHERMALINFRAREDIMAGERYOFLWIRANDMWIRINDOORIMAGESEQUENCESHKEKENELANDBSANKUR7PROPOSEDMULTIRESOLUTIONANALYSISONSUBSPACEANALYSISDOMAINLIKEPCAANDICAINTHISWORK,ATECHNIQUEFORHUMANFACERECOGNITIONBASEDONFUSIONINWAVELETTRANSFORMEDDOMAINISPROPOSEDANDDISCUSSEDSUBSEQUENTLYIISYSTEMOVERVIEWTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1ALLTHEPROCESSINGSTEPSUSEDINTHISPAPERARESHOWNINTHEBLOCKDIAGRAMINTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVELFIVEHASBEENDONEUSINGWAVELETTHENFUSEDIMAGEISGENERATEDFROMBOTHTHEDECOMPOSEDIMAGESTHESETRANSFORMEDIMAGESSEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEEIGENSPACEISNAMEDASFUSEDEIGENSPACESONCETHISPROJECTIONISDONE,THENEXTSTEPISTOUSEACLASSIFIERTOCLASSIFYTHEMAMULTILAYERPERCEPTRONHASBEENUSEDFORTHISPURPOSEAIMAGEDECOMPOSITIONWAVELETTRANSFORMSAREMULTIRESOLUTIONIMAGEDECOMPOSITIONTOOLTHATPROVIDEAVARIETYOFCHANNELSREPRESENTINGTHEIMAGEFEATUREBYDIFFERENTFREQUENCYSUBBANDSATMULTISCALEITISAFAMOUSTECHNIQUEINANALYZINGSIGNALSWHENDECOMPOSITIONISPERFORMED,THEAPPROXIMATIONANDDETAILCOMPONENTCANBESEPARATED1THEDAUBECHIESWAVELETDB2DECOMPOSEDUPTOFIVELEVELSHASBEENUSEDHEREFORIMAGEFUSIONTHESEWAVELETSAREUSEDHEREBECAUSETHEYAREREALANDCONTINUOUSINNATUREANDHAVELEASTROOTMEANSQUARERMSERRORCOMPAREDTOOTHERWAVELETS56FUSEDWAVELETCOEFFICIENTMAPSCLASSESRECOGNITIONRESULTCLASSIFICATIONMULTILAYERPERCEPTRONNEURALNETWORKDIMENSIONREDUCTIONDECISIONFUSIONBYAVERAGINGWAVELETCOEFFICIENTUPTOLEVEL5WAVELETCOEFFICIENTUPTOLEVEL5VISUALIMAGETHERMALIMAGEIDWTDWTDWTPCARECONSTRUCTEDFUSEDIMAGEFIGURE1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSDEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHEFIRSTPARTOFFIG1SHOWINGAFTERDECOMPOSITIONOFTWOIMAGESCA,CH,CV,CDDWT2X,WNAME1CA,CH,CV,CDDWT2X,LO_D,HI_D2EQUATION1,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONEQUATION2LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG2DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS234BIMAGERECONSTRUCTIONTHEMORETHEDECOMPOSITIONSCHEMEISBEINGREPEATED,THEMORETHEAPPROXIMATIONIMAGECONCENTRATESINTHELOWFREQUENCYENERGYTOGETRIDOFTHEILLUMINATIONEFFECTSTHATMAYINFLUENCETHERECOGNITIONRATE,THECOEFFICIENTSINWAVELETAPPROXIMATIONSUBBANDISSETTOZEROCONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTFINALLYTHERECONSTRUCTTEDIMAGEISUSEDASTHEINPUTTOPCAFORRECOGNITIONXIDWT2CA,CH,CV,CD,WNAME3XIDWT2CA,CH,CV,CD,LO_R,HI_R4IDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYBYTHEEQUATIONNO4,WECANRECONSTRUCTTHEIMAGEUSINGFILTERSLO_RRECONSTRUCTLOWPASSANDHI_RRECONSTRUCTHIGHPASSINTHEFIG3WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGECPRINCIPALCOMPONENTANALYSISPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHERECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUESONCETHENEWFACESPACEISCONSTRUCTED,WHENATESTIMAGEARRIVES,ITISPROJECTEDONTOTHISFACESPACETOYIELDTHEFEATUREVECTORTHEREPRESENTATIONCOEFFICIENTSINTHECONSTRUCTEDFACESPACETHECLASSIFIERDECIDESFORTHEIDENTITYOFTHEINDIVIDUAL,ACCORDINGTOASIMILARITYSCOREBETWEENTHETESTIMAGESFEATUREVECTORANDTHEPCAFEATUREVECTORSOFTHEINDIVIDUALSINTHEDATABASE723DANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT”INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS82122232425IIIEXPERIMENTSRESULTSANDDISCUSSIONTHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYWEANALYZETHEPERFORMANCEOFOURALGORITHMUSINGTHEIRISTHERMAL/VISUALFACEDATABASEAIRISTHERMAL/VISUALFACEDATABASEINTHISDATABASE,ALLTHETHERMALANDVISIBLEUNREGISTEREDFACEIMAGESARETAKENUNDERVARIABLEILLUMINATIONS,EXPRESSIONS,ANDPOSESTHEACTUALSIZEOFTHEIMAGESIS320X240PIXELSFORBOTHVISUALANDTHERMAL176250IMAGESPERPERSON,11IMAGESPERROTATIONPOSESFOREACHEXPRESSIONANDEACHILLUMINATIONTOTAL30CLASSESAREPRESENTINTHATDATABASEANDTHESIZEOFTHEDATABASEIS183GB28SOMEFUSEDIMAGESOFTHEIRCORRESPONDINGTHERMALANDVISUALIMAGESARESHOWNFIG4CACHCVCDLO_RHI_RLO_RHI_RCOLUMNSCOLUMNSCOLUMNSCOLUMNSLO_RWKEEPHI_R222222FIGURE3STEPSFORRECONSTRUCTIONOFANIMAGELO_DROWSHI_DROWSCAJ22LO_DHI_DLO_DHI_DCOLUMNSCOLUMNSCOLUMNSCOLUMNS2222CACHCVCDFIGURE2STEPSFORDECOMPOSITIONOFANIMAGEABCFIGURE4SAMPLEATHERMALIMAGESBVISUALIMAGESCCORRESPONDINGFUSEDIMAGESOFIRISDATABASEBTRAININGANDTESTINGATTHETIMEOFEXPERIMENT,WEUSEDTOTAL200VISUALAND200THERMALIMAGES,INWHICH20IMAGESPERCLASSOF10DIFFERENTCLASSESOFIRISDATABASEDAUBECHIESWAVELETTRANSFORMHASBEENUSEDTOGENERATEFUSEDIMAGESOFBOTHTHEDATABASESTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPFORTHISRESEARCHPAPER,WEFIRSTTRAINOURNETWORKUSING100FUSEDIMAGESIE10IMAGESPERCLASSANDTHOSEARECONVERTEDFROMVISUALANDTHEIRCORRESPONDINGTHERMALIMAGESOFIRISTHERMAL/VISUALFACEDATABASEATTHETIMEOFTRAINING,MULTILAYERNEURALNETWORKWITHBACKPROPAGATIONHASBEENUSEDMOMENTUMALLOWSTHENETWORKTORESPONDNOTONLYTOTHELOCALGRADIENT,BUTALSOTORECENTTRENDSINTHEERRORSURFACEAFTERTRAININGTHENETWORK,ITWASTESTEDWITHATOTALOF10DIFFERENTRUNSFOR10DIFFERENTCLASSESANDALLTHEEXPERIMENTSRESULTSOFIRISDATABASEARESHOWNINTABLEIALLTHESEIMAGESCONTAINEDDIFFERENTKINDOFEXPRESSIONSAND70OFTHEIMAGESWERETAKENINDIFFERENTILLUMINATIONCONDITIONSTHECLASSESWITHDIFFERENTILLUMINATIONSWITHCHANGESINEXPRESSIONSARECLASS1,CLASS2,CLASS3,CLASS4,CLASS6,CLASS7ANDCLASS9,WHEREASCLASS5,CLASS8ANDCLASS10AREWITHCHANGESINEXPRESSIONSONLYINTHEFIGURE5,ALLTHERECOGNITIONRATESOFDIFFERENTCLASSESAREPRESENTEDFROMTHATFIGUREONECANOBSERVETHATTHECLASSES,CLASS3,CLASS6,CLASS7ANDCLASS10ARESHOWINGHIGHESTRECOGNITIONRATEOUTOFTHOSEFOURCLASSES,CLASS3ANDCLASS6CONTAINTHEIMAGESWITHCHANGESINILLUMINATIONASWELLASEXPRESSIONWHEREASOTHERTWOCLASSESCONTAINIMAGESWITHCHANGESISEXPRESSIONSONLYFIGURE5SHOWSRECOGNITIONRATEWITHFALSEREJECTIONTABLEIEXPERIMENTALRESULTSONIRISCLASSESUSEDNOOFTRAININGIMAGESNOOFTESTINGIMAGESWHICHARENOTUSEDDURINGTRAININGRECOGNITIONRATECLASS1101080CLASS2101070CLASS31010100CLASS4101070CLASS5101080CLASS61010100CLASS7101080CLASS81010100CLASS9101070CLASS101010100IVCONCLUSIONINTHISAFUSIONTECHNIQUEFORHUMANFACERECOGNITIONUSINGDAUBECHIESWAVELETTRANSFORMONTHEFACEIMAGESOFDIFFERENTILLUMINATIONWITHEXPRESSIONHASBEENPRESENTEDAFTERCOMPLETIONOFFUSION,IMAGESWEREPROJECTEDINTOANEIGENSPACETHOSEPROJECTEDFUSEDEIGENFACESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONEIGENSPACEISCONSTITUTEDBYTHEIMAGESBELONGTOTHETRAININGSETOFTHECLASSIFIER,WHICHISAMULTILAYERPERCEPTRONTHEEFFICIENCYOFTHESCHEMEHASBEENDEMONSTRATEDONIRISTHERMAL/VISUALFACEDATABASEWHICHCONTAINSIMAGESGATHEREDWITHVARYINGLIGHTING,FACIALEXPRESSION,POSEANDFACIALDETAILSTHESYSTEMHASACHIEVEDAMAXIMUMRECOGNITIONRATEOF100INFOURDIFFERENTCASESWITHANOVERALLRECOGNITIONRATEOF85ACKNOWLEDGMENTFIRSTAUTHORISTHANKFULTOTHEPROJECTENTITLED“DEVELOPMENTOFTECHNIQUESFORHUMANFACEBASEDONLINEAUTHENTICATIONSYSTEMPHASEI”SPONSOREDBYDEPARTMENTOFINFORMATIONTECHNOLOGYUNDERTHEMINISTRYOFCOMMUNICATIONSANDINFORMATIONTECHNOLOGY,NEWDELHI110003,GOVERNMENTOFINDIAVIDENO1214/08ESD,DATED27/0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络编辑师考试网络编辑数据分析与报告撰写试题
- 2025年特种设备安全管理人员考试试卷:特种设备安全法规解读与案例分析试题
- 2025年西式烹调师(中级)西餐设备操作技能鉴定试卷
- 2025年网络编辑师考试图片处理试题
- 2025年托福考试写作高分预测试卷:夏季班作文审题技巧提升试题
- 2025年室内装饰设计师(中级)装饰材料选购与环保标准考试试题
- 2025年无损检测员(中级)无损检测新技术与新设备试卷
- 2025年物业管理师考试物业管理信息化管理真题模拟高频考点试题
- 2025年事业单位招聘考试教师地理学科专业知识冲刺模拟试卷
- 2025年托福考试阅读真题模拟模拟试卷高分策略解析
- 员工薪资调整审批表
- 除锈剂MSDS参考资料
- (完整word版)中医病证诊断疗效标准
- 新人教版八年级物理(下册)期末综合能力测试卷及答案
- 低压配电箱安装施工方案
- 蓄水池检验批质量验收记录(海绵城市质检表格)
- 单梁起重机安全操作培训课件
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 脑出血诊治指南
- 2022年重庆市汽车运输(集团)有限责任公司招聘考试真题
- 结构方案论证会汇报模板参考83P
评论
0/150
提交评论