




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FUSIONOFDAUBECHIESWAVELETCOEFFICIENTSFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2,ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYSURYAMANINAGAR799130,TRIPURA,INDIAEMAILMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA700032,INDIAAICTEEMERITUSFELLOWEMAILDEBOTOSHINDIATIMESCOM,MITANASIPURI,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTINTHISPAPERFUSIONOFVISUALANDTHERMALIMAGESINWAVELETTRANSFORMEDDOMAINHASBEENPRESENTEDHERE,DAUBECHIESWAVELETTRANSFORM,CALLEDASD2,COEFFICIENTSFROMVISUALANDCORRESPONDINGCOEFFICIENTSCOMPUTEDINTHESAMEMANNERFROMTHERMALIMAGESARECOMBINEDTOGETFUSEDCOEFFICIENTSAFTERDECOMPOSITIONUPTOFIFTHLEVELLEVEL5FUSIONOFCOEFFICIENTSISDONEINVERSEDAUBECHIESWAVELETTRANSFORMOFTHOSECOEFFICIENTSGIVESUSFUSEDFACEIMAGESTHEMAINADVANTAGEOFUSINGWAVELETTRANSFORMISTHATITISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONFUSEDIMAGESTHUSFOUNDAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORREDUCTIONOFDIMENSIONSANDTHENTHOSEREDUCEDFUSEDIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONFOREXPERIMENTSIRISTHERMAL/VISUALFACEDATABASEWASUSEDEXPERIMENTALRESULTSSHOWTHATTHEPERFORMANCEOFTHEAPPROACHPRESENTEDHEREACHIEVESMAXIMUMSUCCESSRATEOF100INMANYCASESINDEXTERMSTHERMALIMAGE,DAUBECHIESWAVELETTRANSFORM,FUSION,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRON,CLASSIFICATIONIINTRODUCTIONMANYMETHODSHAVEBEENPROPOSEDFORFACERECOGNITIONFUSIONOFIMAGESEXPLOITSSYNERGISTICINTEGRATIONOFIMAGESOBTAINEDFROMMULTIPLESENSORSANDBYTHATITCANGATHERDATAINDIFFERENTFORMSLIKEAPPEARANCEANDANATOMICALINFORMATIONOFTHEFACE,WHICHENRICHESTHESYSTEMINIMPROVINGRECOGNITIONACCURACY9ASAMATTEROFFACTFUSIONOFIMAGESHASALREADYESTABLISHEDITSIMPORTANCEINCASEOFIMAGEANALYSIS,RECOGNITION,ANDCLASSIFICATIONFORINSTANCE,AGLIKAGYAOUROVAETAL10TRIEDTOIMPLEMENTEDPIXELBASEDFUSIONSCHEMEINTHEWAVELETDOMAIN,ANDFEATUREBASEDFUSIONINTHEEIGENSPACEDOMAINALTHOUGHTHEIRFUSIONAPPROACHWASNOTABLETOFULLYDISCOUNTILLUMINATIONEFFECTSPRESENTINTHEVISIBLEIMAGESBUTTHEYSHOWEDSUBSTANTIALIMPROVEMENTSINOVERALLRECOGNITIONPERFORMANCETHEYALSOINDICATEDTHATIRBASEDRECOGNITIONPERFORMANCEDEGRADESSERIOUSLYWHENEYEGLASSESAREPRESENTINTHEPROBEIMAGEBUTNOTINTHEGALLERYIMAGEANDVICEVERSAONTHEOTHERHANDFORTHEIMPROVEMENTOFTHEPERFORMANCEOFFACERECOGNITIONWHENFACEIMAGESAREOCCLUDEDBYWEARINGEYEGLASSES,JEONGSEONPARKETAL11FIRSTDETECTTHEREGIONSOCCLUDEDBYTHEGLASSESANDGENERATEANATURALLOOKINGFACIALIMAGEWITHOUTGLASSESBYRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONTHEYPROPOSEDANEWGLASSESREMOVALMETHODBASEDONRECURSIVEERRORCOMPENSATIONUSINGPCARECONSTRUCTIONGEORGEBEBISETAL12INVESTIGATEDTHATTWODIFFERENTFUSIONSCHEMESLIKEFIRSTONEISPIXELBASEDANDOPERATESINTHEWAVELETDOMAINUSINGHAARTRANSFORMS,WHILETHESECONDONEISFEATUREBASEDANDOPERATESINTHEEIGENSPACEDOMAININBOTHCASES,THEYEMPLOYASIMPLEANDGENERALFRAMEWORKBASEDONGENETICALGORITHMSGASTOFINDANOPTIMUMFUSIONSTRATEGYAMITARANETAL13DEMONSTRATEDTHESPECTRALBANDINVARIANTWAVEMACHFILTERSWHICHAREDESIGNEDUSINGIMAGESOFCCD/IRCAMERAFUSEDBYDAUBECHIESWAVELETTRANSFORMANDIMPLEMENTEDINHYBRIDDIGITALOPTICALCORRELATORARCHITECTURETOIDENTIFYMULTIPLETARGETSINASCENETHEYHAVEFUSIONOFINFRAREDANDCCDCAMERABECAUSETHEPERFORMANCEOFCCDCAMERAISBETTERUNDERGOODILLUMINATIONCONDITIONSWHEREASIRCAMERAGIVESABETTEROUTPUTUNDERPOORILLUMINATIONORINTHENIGHTCONDITIONSALSOTHEAUTHORSIN14PROPOSEDDATAFUSIONOFVISUALANDTHERMALIMAGESUSINGGABORFILTERINGTECHNIQUEWHICHEXTRACTSFACIALFEATURES,AREUSEDASAFACERECOGNITIONTECHNIQUEITHASBEENFOUNDTHATBYUSINGTHEPROPOSEDFUSIONTECHNIQUEGABORFILTERCANRECOGNIZEFACEEVENWITHVARIABLEEXPRESSIONSANDLIGHTINTENSITIES,BUTNOTINEXTREMECONDITIONDIEGOASOCOLINSKYANDANDREASELINGER15CONSIDEREDOUTDOORANDINDOORIMAGINGCONDITIONSFORTHERMALIMAGING,ANDONEOFFEWTODOSOEVENFORVISIBLEFACERECOGNITIONITISCLEARFROMTHEIREXPERIMENTSTHATFACERECOGNITIONOUTDOORSWITHVISIBLEIMAGERYISFARLESSACCURATETHANWHENPERFORMEDUNDERFAIRLYCONTROLLEDINDOORCONDITIONSFOROUTDOORUSE,THERMALIMAGINGPROVIDESUSWITHACONSIDERABLEPERFORMANCEBOOSTTHERMALRECOGNITIONPERFORMANCESUFFERSAMODERATEDECAYWHENPERFORMEDOUTSIDEAGAINSTANINDOORENROLLMENTSET,PROBABLYASARESULTOFENVIRONMENTALCHANGESJINGUHEOETAL16DESCRIBESCOMPARISONRESULTSONTHREEFUSIONBASEDFACERECOGNITIONTECHNIQUESLIKEDATAFUSIONOFVISUALANDTHERMALIMAGESDF,DECISIONFUSIONWITHHIGHESTMATCHINGSCOREFH,ANDDECISIONFUSIONWITHAVERAGEMATCHINGSCOREFAANDSHOWEDTHATFUSIONBASEDFACERECOGNITIONTECHNIQUESOUTPERFORMEDINDIVIDUALVISUALANDTHERMALFACERECOGNIZERSUNDERILLUMINATIONVARIATIONSANDFACIALEXPRESSIONSFROMTHEMDECISIONFUSIONWITHAVERAGEMATCHINGSCORECONSISTENTLYDEMONSTRATEDSUPERIORRECOGNITIONACCURACIESASPERTHEIRRESULTSIOANNISPAVLIDISANDPETERSYMOSEK17DEMONSTRATEDATHEORETICALANDEXPERIMENTALARGUMENTTHATADUALBANDUPPERANDLOWERBANDFUSIONSYSTEMINTHENEARINFRAREDCANSEGMENTHUMANFACESMUCHMOREACCURATELYTHANTRADITIONALVISIBLEBANDDISGUISEFACEDETECTIONSYSTEMSDIEGOASOCOLINSKYANDANDREASELINGER18PERFORMEDACLEARANALYSISTHATLWIRIMAGERYOFHUMANFACESISNOTONLYAVALIDBIOMETRIC,BUTALMOSTSURELYASUPERIORONETOCOMPARABLEVISIBLEIMAGERYXINCHEN,PATRICKJFLYNNANDKEVINWBOWYER19SHOWEDTHATTHECOMBINATIONOFIRPLUSVISIBLECANOUTPERFORMEITHERIRORVISIBLEALONETHEYFINDACOMBINATIONMETHODTHATCONSIDERSTHEDISTANCEVALUESPERFORMSBETTERTHANONETHATONLYCONSIDERSRANKSCHRISTOPHERKEVELANDETAL20INTRODUCEDAMETHODOLOGYFORTRACKINGHUMANFACESINCALIBRATEDTHERMALINFRAREDIMAGERYOFLWIRANDMWIRINDOORIMAGESEQUENCESHKEKENELANDBSANKUR7PROPOSEDMULTIRESOLUTIONANALYSISONSUBSPACEANALYSISDOMAINLIKEPCAANDICAINTHISWORK,ATECHNIQUEFORHUMANFACERECOGNITIONBASEDONFUSIONINWAVELETTRANSFORMEDDOMAINISPROPOSEDANDDISCUSSEDSUBSEQUENTLYIISYSTEMOVERVIEWTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1ALLTHEPROCESSINGSTEPSUSEDINTHISPAPERARESHOWNINTHEBLOCKDIAGRAMINTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVELFIVEHASBEENDONEUSINGWAVELETTHENFUSEDIMAGEISGENERATEDFROMBOTHTHEDECOMPOSEDIMAGESTHESETRANSFORMEDIMAGESSEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEEIGENSPACEISNAMEDASFUSEDEIGENSPACESONCETHISPROJECTIONISDONE,THENEXTSTEPISTOUSEACLASSIFIERTOCLASSIFYTHEMAMULTILAYERPERCEPTRONHASBEENUSEDFORTHISPURPOSEAIMAGEDECOMPOSITIONWAVELETTRANSFORMSAREMULTIRESOLUTIONIMAGEDECOMPOSITIONTOOLTHATPROVIDEAVARIETYOFCHANNELSREPRESENTINGTHEIMAGEFEATUREBYDIFFERENTFREQUENCYSUBBANDSATMULTISCALEITISAFAMOUSTECHNIQUEINANALYZINGSIGNALSWHENDECOMPOSITIONISPERFORMED,THEAPPROXIMATIONANDDETAILCOMPONENTCANBESEPARATED1THEDAUBECHIESWAVELETDB2DECOMPOSEDUPTOFIVELEVELSHASBEENUSEDHEREFORIMAGEFUSIONTHESEWAVELETSAREUSEDHEREBECAUSETHEYAREREALANDCONTINUOUSINNATUREANDHAVELEASTROOTMEANSQUARERMSERRORCOMPAREDTOOTHERWAVELETS56FUSEDWAVELETCOEFFICIENTMAPSCLASSESRECOGNITIONRESULTCLASSIFICATIONMULTILAYERPERCEPTRONNEURALNETWORKDIMENSIONREDUCTIONDECISIONFUSIONBYAVERAGINGWAVELETCOEFFICIENTUPTOLEVEL5WAVELETCOEFFICIENTUPTOLEVEL5VISUALIMAGETHERMALIMAGEIDWTDWTDWTPCARECONSTRUCTEDFUSEDIMAGEFIGURE1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSDEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHEFIRSTPARTOFFIG1SHOWINGAFTERDECOMPOSITIONOFTWOIMAGESCA,CH,CV,CDDWT2X,WNAME1CA,CH,CV,CDDWT2X,LO_D,HI_D2EQUATION1,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONEQUATION2LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG2DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS234BIMAGERECONSTRUCTIONTHEMORETHEDECOMPOSITIONSCHEMEISBEINGREPEATED,THEMORETHEAPPROXIMATIONIMAGECONCENTRATESINTHELOWFREQUENCYENERGYTOGETRIDOFTHEILLUMINATIONEFFECTSTHATMAYINFLUENCETHERECOGNITIONRATE,THECOEFFICIENTSINWAVELETAPPROXIMATIONSUBBANDISSETTOZEROCONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTFINALLYTHERECONSTRUCTTEDIMAGEISUSEDASTHEINPUTTOPCAFORRECOGNITIONXIDWT2CA,CH,CV,CD,WNAME3XIDWT2CA,CH,CV,CD,LO_R,HI_R4IDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYBYTHEEQUATIONNO4,WECANRECONSTRUCTTHEIMAGEUSINGFILTERSLO_RRECONSTRUCTLOWPASSANDHI_RRECONSTRUCTHIGHPASSINTHEFIG3WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGECPRINCIPALCOMPONENTANALYSISPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHERECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUESONCETHENEWFACESPACEISCONSTRUCTED,WHENATESTIMAGEARRIVES,ITISPROJECTEDONTOTHISFACESPACETOYIELDTHEFEATUREVECTORTHEREPRESENTATIONCOEFFICIENTSINTHECONSTRUCTEDFACESPACETHECLASSIFIERDECIDESFORTHEIDENTITYOFTHEINDIVIDUAL,ACCORDINGTOASIMILARITYSCOREBETWEENTHETESTIMAGESFEATUREVECTORANDTHEPCAFEATUREVECTORSOFTHEINDIVIDUALSINTHEDATABASE723DANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT”INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS82122232425IIIEXPERIMENTSRESULTSANDDISCUSSIONTHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYWEANALYZETHEPERFORMANCEOFOURALGORITHMUSINGTHEIRISTHERMAL/VISUALFACEDATABASEAIRISTHERMAL/VISUALFACEDATABASEINTHISDATABASE,ALLTHETHERMALANDVISIBLEUNREGISTEREDFACEIMAGESARETAKENUNDERVARIABLEILLUMINATIONS,EXPRESSIONS,ANDPOSESTHEACTUALSIZEOFTHEIMAGESIS320X240PIXELSFORBOTHVISUALANDTHERMAL176250IMAGESPERPERSON,11IMAGESPERROTATIONPOSESFOREACHEXPRESSIONANDEACHILLUMINATIONTOTAL30CLASSESAREPRESENTINTHATDATABASEANDTHESIZEOFTHEDATABASEIS183GB28SOMEFUSEDIMAGESOFTHEIRCORRESPONDINGTHERMALANDVISUALIMAGESARESHOWNFIG4CACHCVCDLO_RHI_RLO_RHI_RCOLUMNSCOLUMNSCOLUMNSCOLUMNSLO_RWKEEPHI_R222222FIGURE3STEPSFORRECONSTRUCTIONOFANIMAGELO_DROWSHI_DROWSCAJ22LO_DHI_DLO_DHI_DCOLUMNSCOLUMNSCOLUMNSCOLUMNS2222CACHCVCDFIGURE2STEPSFORDECOMPOSITIONOFANIMAGEABCFIGURE4SAMPLEATHERMALIMAGESBVISUALIMAGESCCORRESPONDINGFUSEDIMAGESOFIRISDATABASEBTRAININGANDTESTINGATTHETIMEOFEXPERIMENT,WEUSEDTOTAL200VISUALAND200THERMALIMAGES,INWHICH20IMAGESPERCLASSOF10DIFFERENTCLASSESOFIRISDATABASEDAUBECHIESWAVELETTRANSFORMHASBEENUSEDTOGENERATEFUSEDIMAGESOFBOTHTHEDATABASESTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPTHEDAUBECHIESWAVELETDB2DECOMPOSESTHEIMAGESUPTOFIVELEVELSTOMAKINGFUSIONIMAGEHERE,WECONSIDERHUMANFACERECOGNITIONUSINGMULTILAYERPERCEPTRONMLPFORTHISRESEARCHPAPER,WEFIRSTTRAINOURNETWORKUSING100FUSEDIMAGESIE10IMAGESPERCLASSANDTHOSEARECONVERTEDFROMVISUALANDTHEIRCORRESPONDINGTHERMALIMAGESOFIRISTHERMAL/VISUALFACEDATABASEATTHETIMEOFTRAINING,MULTILAYERNEURALNETWORKWITHBACKPROPAGATIONHASBEENUSEDMOMENTUMALLOWSTHENETWORKTORESPONDNOTONLYTOTHELOCALGRADIENT,BUTALSOTORECENTTRENDSINTHEERRORSURFACEAFTERTRAININGTHENETWORK,ITWASTESTEDWITHATOTALOF10DIFFERENTRUNSFOR10DIFFERENTCLASSESANDALLTHEEXPERIMENTSRESULTSOFIRISDATABASEARESHOWNINTABLEIALLTHESEIMAGESCONTAINEDDIFFERENTKINDOFEXPRESSIONSAND70OFTHEIMAGESWERETAKENINDIFFERENTILLUMINATIONCONDITIONSTHECLASSESWITHDIFFERENTILLUMINATIONSWITHCHANGESINEXPRESSIONSARECLASS1,CLASS2,CLASS3,CLASS4,CLASS6,CLASS7ANDCLASS9,WHEREASCLASS5,CLASS8ANDCLASS10AREWITHCHANGESINEXPRESSIONSONLYINTHEFIGURE5,ALLTHERECOGNITIONRATESOFDIFFERENTCLASSESAREPRESENTEDFROMTHATFIGUREONECANOBSERVETHATTHECLASSES,CLASS3,CLASS6,CLASS7ANDCLASS10ARESHOWINGHIGHESTRECOGNITIONRATEOUTOFTHOSEFOURCLASSES,CLASS3ANDCLASS6CONTAINTHEIMAGESWITHCHANGESINILLUMINATIONASWELLASEXPRESSIONWHEREASOTHERTWOCLASSESCONTAINIMAGESWITHCHANGESISEXPRESSIONSONLYFIGURE5SHOWSRECOGNITIONRATEWITHFALSEREJECTIONTABLEIEXPERIMENTALRESULTSONIRISCLASSESUSEDNOOFTRAININGIMAGESNOOFTESTINGIMAGESWHICHARENOTUSEDDURINGTRAININGRECOGNITIONRATECLASS1101080CLASS2101070CLASS31010100CLASS4101070CLASS5101080CLASS61010100CLASS7101080CLASS81010100CLASS9101070CLASS101010100IVCONCLUSIONINTHISAFUSIONTECHNIQUEFORHUMANFACERECOGNITIONUSINGDAUBECHIESWAVELETTRANSFORMONTHEFACEIMAGESOFDIFFERENTILLUMINATIONWITHEXPRESSIONHASBEENPRESENTEDAFTERCOMPLETIONOFFUSION,IMAGESWEREPROJECTEDINTOANEIGENSPACETHOSEPROJECTEDFUSEDEIGENFACESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONEIGENSPACEISCONSTITUTEDBYTHEIMAGESBELONGTOTHETRAININGSETOFTHECLASSIFIER,WHICHISAMULTILAYERPERCEPTRONTHEEFFICIENCYOFTHESCHEMEHASBEENDEMONSTRATEDONIRISTHERMAL/VISUALFACEDATABASEWHICHCONTAINSIMAGESGATHEREDWITHVARYINGLIGHTING,FACIALEXPRESSION,POSEANDFACIALDETAILSTHESYSTEMHASACHIEVEDAMAXIMUMRECOGNITIONRATEOF100INFOURDIFFERENTCASESWITHANOVERALLRECOGNITIONRATEOF85ACKNOWLEDGMENTFIRSTAUTHORISTHANKFULTOTHEPROJECTENTITLED“DEVELOPMENTOFTECHNIQUESFORHUMANFACEBASEDONLINEAUTHENTICATIONSYSTEMPHASEI”SPONSOREDBYDEPARTMENTOFINFORMATIONTECHNOLOGYUNDERTHEMINISTRYOFCOMMUNICATIONSANDINFORMATIONTECHNOLOGY,NEWDELHI110003,GOVERNMENTOFINDIAVIDENO1214/08ESD,DATED27/0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- BP-Fluor-555-azide-生命科学试剂-MCE
- 义务教育道德与法治课程标准(2022年版)
- 定期报告:六月继续震荡偏强结构性行情依旧
- 2025中国“双一流”高校医学建设数据分析报告
- 2025年零售门店运营数字化技术应用:智能化客服与体验提升报告
- 2025年工业废气深度净化技术产业链上下游协同发展研究报告
- 医疗行业大数据隐私保护技术在疾病预测中的应用报告
- 教育投资并购2025战略布局报告:整合策略与行业洞察
- 2025年生物质能源在微电网分布式能源系统中的应用前景与优化策略报告
- 工业互联网平台2025年网络安全态势感知技术信息安全技术前沿动态报告
- 马诗听评课记录范文
- 辽宁省抚顺市抚顺县2024-2025学年七年级上学期期末地理试卷(含答案)
- 国家开放大学法律事务专科《民法学(2)》期末纸质考试总题库2025春期考试版
- 定额〔2025〕3号文-关于发布2023版西藏地区电网工程概预算定额价格水平调整的通知
- 《现场改善案例集》课件
- 医院结核感染培训
- 大学生应急救护知到智慧树章节测试课后答案2024年秋西安欧亚学院
- 临床心内科主任竞聘稿
- 电动工器具安全使用培训
- 防水工程专项施工方案
- 日本建设项目可视化、安全文明、工艺管理总结
评论
0/150
提交评论