电流驱动微波振荡器微波特性分析毕业论文_第1页
电流驱动微波振荡器微波特性分析毕业论文_第2页
电流驱动微波振荡器微波特性分析毕业论文_第3页
电流驱动微波振荡器微波特性分析毕业论文_第4页
电流驱动微波振荡器微波特性分析毕业论文_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学学学学生生生生毕毕毕毕业业业业论论论论文文文文课题名称课题名称课题名称课题名称电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析姓姓姓姓名名名名肖肖肖肖盼盼盼盼学学学学号号号号081250123院院院院系系系系通信与电子工程学院通信与电子工程学院通信与电子工程学院通信与电子工程学院专专专专业业业业电子科学与技术电子科学与技术电子科学与技术电子科学与技术指导教师指导教师指导教师指导教师张光张光张光张光富讲师富讲师富讲师富讲师2012年年年年55月月月月2525日日日日2012届学生届学生届学生届学生毕业论文材料毕业论文材料毕业论文材料毕业论文材料(四四四四)I湖南城市学院本科毕业论文诚信声明本人郑重声明所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。本科毕业论文作者签名2012年5月25日II目录摘要1关键词1ABSTRACT1KEYWORDS1引言21微磁学基本理论311微磁模拟模型312微磁模拟研究32自旋波发射的基本理论421自旋波发射基础4211自旋波发射的条件4212自旋波发射的宏自旋模型63自旋角动量转移效应(STT效应)631STT效应基本概念和原理632STT诱导磁化反转7321MTJ纳米柱中的STT诱导磁化反转效应7322STT诱导磁化反转效应所需临界电流的降低733STT效应引起的自旋极化电流8331STT效应引起的自旋波激发和微波电流的产生8332STT效应引起的磁化反转和自旋极化电流的关系94仿真分析941仿真分析及模型建立942外加磁场对微波频率的影响1043驱动电流对微波频率的影响及最佳电流密度12结论18参考文献18致谢19附录201电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析电流驱动微波振荡器特性分析摘摘摘摘要要要要基于电流驱动微波振荡器件具有结构简单、低功耗、容易集成等特点,在现代通信领域具有广阔的应用前景。本论文主要介绍了基于自旋角动量转移效应研究自旋波发射效应的理论及电流驱动微波振荡器的基本原理;利用微磁学理论方法及仿真软件对电流驱动微波振荡器特性进行研究,研究得到了电流驱动微波振荡器的本征频谱特性。在铁磁性隧道结(MTJ)结构中,当输入电流一定时,微波振荡器的微波频率随外加磁场增大而增大,且在外磁场为10MT时微波振荡器的微波频谱出现两个本征特征峰,且最佳电流密度为J201011A/M2微波次峰值最小。无外加磁场时,仅在电流的驱动下微波振荡器的微波频谱出现多个本征特征峰,且数目随电流密度的增大先减少而后增多,当电流密度J1751011A/M2时只出现三个波峰,其中微波主峰对应的频率随电流密度增大而减小。在这些最佳电流密度下电流驱动微波振荡器可产生具有周期可持续性及自激振荡的微波。关键词自旋波发射自旋角动量转移效应电流驱动;微波频率;铁磁性隧道结。CURRENTDRIVENMICROWAVEOSCILLATORCHARACTERISTICANALYSISABSTRACTTHEMICROWAVEOSCILLATORBASEDONTHESPINWAVEEFFECTHASATTRACTEDINTENSEATTENTIONANDINDICATEDPOTENTIALAPPLICATIONSINMODERNCOMMUNICATIONFIELDBECAUSEOFITSIMMANENTVIRTUESSUCHASSIMPLESTRUCTURE,LOWPOWERCONSUMPTIONANDEASYINTEGRATIONITINTRODUCESTHETHEORYOFSPINWAVEEMITTINGEFFECTANDTHEBASICPRINCIPLEOFMICROWAVEOSCILLATORDRIVENBYELECTRICCURRENTBASEDONSTTEFFECT,ANDRESEACHINGMICROWAVEOSCILLATOROFCURRENTDRIVERSBYUSINGTHEMICROMAGNETICTHEORYMETHODANDSIMULATIONSOFTWAREDISCUSSEDTHEINFLUENCEOFTHESIZEOFEXTERNALMAGNETICFIELDANDTHESIZEOFDRIVECURRENTTOTHEPERFORMANCEOFMICROWAVEOSCILLATORINMTJSTRUCTURE,WEGETSOMECONCLUSIONSBYSIMULATINGRESPECTIVELYINDIFFERENTCURRENTDENSITYANDINDIFFERENTEXTERNALMAGNETICFIELDTOMICROWAVEDEVICES,WHICHISMICROWAVEFREQUENCYINCREASESWITHTHEADDITIONALMAGNETICFIELDINTHEDETERMINATIONOFTHECURRENTDENSITY,ANDMICROWAVEFREQUENCYWITHTHECURRENTDENSITYANDDECREASESINDETERMININGEXTERNALMAGNETICFIELDANDWEGETTHEBESTCURRENTDENSITYINTHELAST,WHICHCOULDMAKEMICROWAVEOSCILLATORPRODUCEASUSTAINABLEANDSELFEXCITEDOSCILLATIONMICROWAVEKEYWORDSSPINWAVEEMITTINGSTTEFFECTLHCDMICROWAVEFREQUENCYMTJ2引言自旋电子学在近20年中获得了空前的发展,SLONCZEWSKI和BERGER理论预言的电流感应磁化翻转和自旋波发射效应为这一领域注入了新的活力。FULLERTON等人统计说明了理论和实验工作者对这两个效应的极力关注程度。自旋波发射效应是指在纳米磁多层结构中垂直平面通以稳恒电流后,除了自旋输运扭矩引起的磁动力进动之外,还会使得磁化矢量的纵向分量产生周期性改变,从而导致器件磁电阻随时间的变化,并在磁性结两端产生交流电压,即得到受电流调制的频率稳定的微波功率输出。微波调制范围可以达到1200GHZ,品质因数可以高达4000以上,并且在一定范围内可以实现线性调制,有望用于新型自旋波发射源和微波谐振器。电流驱动式自旋阀微波振荡器结构简单、体积小,可以不要外磁场,对温度不敏感,电路组成简单,因此具有诱人的应用前景但是有一些关键问题尚待解决。首先,从中可以看出,微波发射率在NW量级,而实际应用中的微波器件发射功率要求为MW量级,自旋波振荡器的功率尚不能满足实用的要求其次,自旋波振荡器的效率一般比较低,比如KISELEV等人所报道的器件效率不到001;第三,磁多层自旋阀结构的电阻很小,需要特殊考虑与其他电路的匹配问题。今后的研究和改进主要包括以下几个方面1如何提高自旋波发射器件的发射功率已成为研究重点。新的器件结构可能会极大地提高器件性能。纳米矩结构的自旋波发射器件将会大大提高发射功率。2微波振荡器的工作最好避免使用外磁场,采用垂直磁化结构是一种选择,但是可能带来工艺实现的困难。3除了结构,探索新型材料也成为自旋波器件的另外一个发展方向。研究具有较高自旋极化效率和高动态磁电阻的材料将会提高器件性能。利用自旋波发射器件开发新型微波通信器件将会极大地推动理论以及实验研究。一方面,自旋波振荡器可以作为高频微波源另一方面,自旋波器件的非线性特性使得它在锁相技术领域获得发展空间。本发明的优点在于固定层和自由层的初始磁化方向都位于膜平面内,且相互垂直,可以使自由层获得最大的横向自旋注入,从而产生大幅度的自旋进动,有利于获得大的微波功率输出,与采用交变磁场激发自旋波的传统方法相比,这种3基于自旋转移矩效应而设计的新型自旋波激发方法表现出两个优点首先电流调控磁性薄膜的磁化状态比磁场更容易实现局域控制其次通过调节电流强度可以方便地实现不同频率的高频微波并且不需要外加磁场。而且结构简单,功耗低,易与CMOS结合便于集成等优点。1市场的迅速崛起;2相关产品产量和销量的快速增长;3技术的研究开发和推广应用有力推动了与其相关的服务业兴起和发展。1微磁学理论11微磁模拟模型由文献1和文献2可知,模拟磁多层结构的理论主要分为两方面宏自旋模型和微磁模拟。宏自旋模型将自由层磁化矢量当作一个宏自旋,即磁化矢量大小保持不变为饱和磁化,归一化的磁化矢量在单位球面上运动。与只需考虑时间分布的宏自旋模型不同,微磁模拟还需要考虑磁化的空间分布。宏自旋和微磁模拟都是基于如下形式的关于磁化矢量的非线性LANDAULIFSHITZGILBERTLLG方程DTDMMHMDTEFFDM(21)12002PMBPMMADMJHMMHMDTDMMSEFFEFFS(22)式中是旋磁比M为磁化强度矢量M表示M的单位矢量HEFFEM/HEFF是有效场,自由能E包括交换能、各向异性能、外磁场能、静磁能和磁致伸缩能为GILBERT阻尼因子T为时间变量。在没有外磁场时,由于存在GILBERT阻尼,方程的解是绕有效场HEFF的衰减进动,其作用使进动张角随时间趋于0或者180,到达稳态之后磁化矢量和有效场或者平行,或者反平行。当有外磁场与铁磁层形成一定的夹角时,则产生磁化绕磁场轴稳定的进动。于磁化在磁场方向的投影始终不变,即磁电阻不会随时间变化,虽然会引起铁磁共振吸收,但是不会产生有用的微波功率发射。因此若要产生有用的微波功率,其进动张角因在0和180之间。上面提到了两种模型,宏自旋模型将在接下来的自旋波发射的基本理论里面详细说明。412微磁模拟研究宏自旋模型虽然解释了自旋阀结构中自旋波发射的某些现象,但是模拟结果与实验还有重要的不一致的地方,比如无法解释实验测到的W区域以及多峰和宽带的微波谱特征,这些不足在微磁模拟中得到部分的解决。在微磁模拟中,自旋矩用自旋流的散度代替,同时考虑电流产生的磁场的作用。BERKOV等人通过微磁模拟发现自由层内磁化是不均匀的,电流产生的磁场作用更加剧了不均匀性。它很自然地解释了多峰和宽带的微波谱特征,是其优于宏自旋模型之处。LEE等人的微磁模拟所得到的外场电流的相图,与实验结果基本对应,划分为NOTSWITCHING区P,平行、SWITCHING区AP,反平行和PRECESSION区进动。还可细致划分为小角度平面内进动IPP区、大角度平面内进动区和平面外进动OPP区和所谓的低功率自旋波发射W区。图中清楚标出与实验相符的W区。通过模拟可以发现W区域对应于电流感应磁场和自旋输运扭矩相互作用引起的磁化动力学涡旋态的形成和消失。具体分析参照文献2。2自旋波发射的基本理论21自旋波发射基础211自旋波发射的条件从文献3和文献4中可以得知,产生有效自旋波发射的必要条件之一是电流驱动。由固定层注入自由层铁磁体中的自旋极化电流提供一个扭矩使得磁化运动偏离平衡态M减小,并引起相应的GILBERT阻尼,二者平衡形成磁化矢量稳定的进动。由于电流是恒定的,自旋波发射要求磁多层结构的电阻要随时间变化。根据一般的磁阻理论,两层磁性薄膜的合成电阻由两者的磁化夹角决定,反平行电阻最大。在磁场作用下,虽然会产生稳定的磁化矢量的进动,但是局域自旋关于易磁化轴对称分布,进动所张锥角保持不变,因而磁多层结构的电阻不会随时间变化,也就不会引起自旋波发射,但是磁场可以产生使磁化翻转的开关效应。稳定自旋波发射的另一条件是固定层与自由层磁化不对准,即存在夹角0,此时自旋流会提供一个恒定的自旋矩的横向分量,并导致磁化矢量宏观的同步进动,且振幅是随时间变化的。这一效应可以用以下的简单理论来说明。电流感应自旋矩表示为式(23)和式(24)如下所示。521ZJZ(23)21/ZJZ24式中Z和J分别表示自由层易磁化轴和自旋流单位矢量、/分别为横向自旋矩和纵向自旋矩分量I是垂直通过磁膜的电流为普朗克常数1为固定层内电流的自旋极化系数。式2表示,由固定层注入的自旋矩被自由层全部吸收。坐标按如下方式选取易磁化轴在膜平面内,设为Z方向横向矩也在平面内,垂直于Z,定为Y方向与平面的垂直方向,即电流方向为X方向。包含自旋扭矩的修正LLG方程变为式(25)。2211ZJZVZJZVDTMDMMHMMDTMDMSEFFSS25将它写作Z分量和XY平面分量的形式,MX、MY、MZ分别为磁化的3分量,则可以得到式(26)和(27)。VMMHMDMSZEFFSZ2COS1DT0122262SIN2SINDT0101VMIVHMIDMEFF27式中0为固定层与自由层间的夹角MMXIMY,为XY面内磁化的模量HEFF为进动频率I代表复数的虚部V是自由层的体积MS是自由层饱和磁化强度括弧内的第二项与电流感应横向自旋矩有关。进动部分X、Y分量的解为如式(28)。2/SIN2/EXPSIN1EXP2SIN0101TTIVIITIVIM28它显示了进动轴向X方向的偏移,横向磁化分量随时间是变化的。由于角动量守恒,总自旋的平方是恒定不变的,连带引起纵向磁化分量随时间的变化,从而导致磁电阻随时间的变化。由于电流是恒定的,磁多层结两端会产生角频率为/2的微波电压。当没有电流或夹角00时,横向自旋矩变为0,解约化为MM0EXPIT的形式,代表绕Z轴恒定锥角的进动,进动轨迹为圆,不会引起磁电阻的变化。上面的分析没有考虑退磁化场的作用,若考虑它的影响,进动6频率变为BZHZ1/2,BZ和HZ分别为磁感应强度和磁场的Z分量,轨迹也变为椭圆。其中式(25)至式(28)的具体分析请参照文献5。212自旋波发射的宏自旋模型在纳米磁多层结构中,由于器件横向尺寸一般在100NM左右,而一般铁磁材料的磁畴大小为0110M,将自由层作为单磁畴假设是一种合理的近似,磁化在自由层内假设是均匀的,在LLG方程中将不含坐标变量。宏自旋模拟结果成功地解释了一些实验现象,如自旋波频率随外磁场单调上升,随电流下降功率随电流先增加,后下降。但有些实验结果不能用宏自旋模型得到解释,如模拟得到的频率在一定电流范围内随电流增大,这与大部分实验给出的随电流增大频率下降的结论不符,也不能解释微波谱图的多峰结构和谱峰的过度展宽。具体分析请参照文献5。3自旋角动量转移效应(STT效应)31STT效应基本概念和原理从文献8和文献9中可得知自旋角动量转移效应的理论和基本原理当自旋极化电流流过纳米尺寸的铁磁薄膜或金属磁性多层膜中时,极化电流与多层膜中的散射会带来由极化电子到铁磁薄膜磁矩的自旋角动量转移,从而对铁磁薄膜磁矩产生自旋矩,引起铁磁薄膜磁矩的不平衡,使之发生转动,进动甚至使磁化方向翻转,这种效应被称为自旋角动量转移效应(STT效应)。对于金属磁性多层膜,无论是GMR或者TMR材料,它们的工作原理都比较类似。它们的基本结构都是由三层薄膜组成,两层铁磁性金属薄膜和一层非磁薄膜当非磁薄膜是金属薄膜时,该结构被称为自旋阀(SPV)而当非磁薄膜是绝缘体时,结构被称为铁磁性隧道结MTJ,一般来说,当两个铁磁层的磁化方向相反时,结构对外表现为高电阻态,当两铁磁层磁化方向相同时,结构表现出低电阻态。通常我们人为地将其中一铁磁层用附加的反铁磁层钉扎住,该铁磁层就被称为被钉扎层,而另一铁磁层被称为自由层因为它的磁化方向可以随外加磁场自由改变。这样一来,外加磁场就可以引起SPV或MTJ结构在磁化平行(即低阻态)和反平行(即高阻态)之间随意变化。换句话说,无论是SPV或MTJ,人们都可以利用外加磁场改变其中的磁化状态,从而控制流过SPV或MTJ结构的电流的大小。这也是SPV和MTJ得以广泛应用的一个最基础的工作原理。7当电流较小时,即使它产生的STT能够克服磁阻尼矩,也只能使得磁化M围绕易轴进行磁进动。而当电流大于某一个临界值IC时,STT可以迫使M转过赤道位置,指向相反方向,即引起磁化方向的翻转。可见,STT诱导磁化反转效应需要满足的条件之一就是外加电流必须大于临界电流IC。基于宏自旋近似MACROSPINAPPROXIMATION,对于铁磁/铜/铁磁三层结构,临界电流可以简单的由下面公式(31)得出。22SKCMHHMEIPI31其中MS是自由层的饱和磁化强度,是磁矩进动的LLG方程中的阻尼系数;是自旋电流的极化率,定义为/IIII)(;I和I分别代表主、次自旋极化电流;是自由层的总磁矩H和HK分别代表外加磁场和薄膜的各向异性场。这里的H与磁性薄膜的易轴方向一致。可见随着H的增大,所需临界电流增加。这种临界电流与外加磁场的关系也是人们从实验现象中区别STT效应诱导磁化反转和局域磁场诱导磁化反转的重要手段之一。对于SPV材料,临界电流密度通常在107108A/CM2。32STT诱导磁化反转321MTJ纳米柱中的STT诱导磁化反转效应他们利用脉冲电流进行的STT效应实验。在以MGO001为势垒的MTJ中,发现STT可以诱导隧穿电阻变化值最大可达160,结果所需要的临界电流密度与电流的脉冲宽度和热因子的关系可近似写为式(32)LN11020KBCCHHKVTKII32其中KMSHK/2,HK是单轴各向异性能量密度;是有效各向异性场;V为脉冲电流宽度;V是自由层体积;0是激活频率的倒数。如果脉冲宽度为30MS,则临界电流密度约为43106A/CM2。具体细节请参照文献6和文献7。322STT诱导磁化反转效应所需临界电流的降低无论从理论预测还是上面所介绍的典型实验结果上看,STT诱导磁化反转行为所需临界电流密度一般都大于107A/CM2。这样高的临界电流值实际上阻碍了8STT效应主要是摧毁MTJ中的绝缘层。理论研究表明,只有当临界电流密度降低到106A/CM2量级,才能保证稳定性。另外,如果还需要与CMOS集成,则临界电流密度可能还需要进一步降低。因此,如何有效的降低STT的临界电流密度也是近几年该领域的一个主要研究方向。除了早期的弹道模型理论外,后来提出的一些所谓扩散模型也合理地解释了临界电流密度的影响因素。特别地,诺贝尔奖得主之一ALBERTFERT在2004年建立模型,研究了临界电流密度与自旋积累之间的关系,得出CO/CU/CO纳米柱中自旋转移矩公式(33)。4128211/0,0/,MMMEJMVEJMVCUCUCUCUTAPPCMAPPCFTAPPCUMAPPCUFAPP33其中P或)(AP指当两CO层磁化平行或反平行时电流作用在自由层上的自旋转矩;MCU是CU层的自旋蓄积;MCO是钉扎层CO内与CU的界面处的自旋蓄积。STT与样品内的自旋积累成正比。因此,如果能有效地提高自旋蓄积,就应该可以降低临界电流密度。自旋转移矩效应的基本原理来自于参考文献8。33STT效应引起的自旋极化电流331STT效应引起的自旋波激发和微波电流的产生我们知道STT将传导电子的动量矩转移给磁层,使磁层中的磁矩获得一个力矩,即自旋矩,从而使其发生进动,其频率在微波区域。当进动角足够大时,可发生STT磁化反转。但整个STT的磁化和反磁化过程都是进动过程。观察STT在纳米磁体中产生微波频率的一致进动和自旋波和利用STT效应在纳米磁体中激发微波电流振荡。较好方法是在较高外磁场阻碍磁化反转,STT效应不足以使得磁化反转的条件下,研究磁矩的持久进动和自旋波激发。KISELEV等人首次在磁纳米柱中清晰地测量出STT效应引起的自旋波激发。所研究的纳米柱成分为CU80/CO40/CU10/CO3/CU2/PT30单位NM然后微加工成130NM10NM的椭圆形状。静态外磁场方向与自由层CO3的易轴方向呈几个度数夹角。研究发现,当外加磁场小于自由层矫顽力约为600OE时,外加直流电流可以驱动自由层的磁化方向发生翻转。而当外加磁场大于自由层矫顽力时,STT效应不足以翻转自由层的磁矩,因此出现磁矩的持续性进动。此时测量出微分电阻随外加电流的变化不再是通常的曲线形状,而是出现一个磁激发峰。将电流控制在磁激发峰附近的数值,通过所搭建的外差混频电路,可以测量出磁矩进动引起的9微波电流信号。微波频率与外磁场的关系符合传统铁磁共振原理,在GHZ区域。332STT效应引起的磁化反转和自旋极化电流的关系从现象上说,所谓的STT效应即在SPV或MTJ中直接通过电流,利用电流改变SPV或MTJ的磁化方向。当外加电流穿过SPV或MTJ的被钉扎层时,电流被极化为与被钉扎层磁化一致的方向,即变为自旋极化电流。极化电流穿过自由层时,它与自由层的磁矩之间产生角动量转换,使得它对自由层的磁矩产生一个力矩,进而迫使自由层的磁化方向趋向与被钉扎层磁化一致,即使得SPV或MTJ的磁化方向呈平行排列的趋势。当入射电流方向相反时,即电流首先通过自由层,它被自由层极化生成与自由层磁化方向一致的极化电流。这个极化电流通过被钉扎层时也会对其产生MTJ但是由于被钉扎层的磁矩方向较稳定,不容易改变。而与此同时,极化电流中的次自旋电子,即与自由层磁化方向相反的自旋电子,会被被钉扎层反射回自由层,从而对自由层的磁矩产生MTJ作用,结果使得自由层与被钉扎层的磁化呈反平行排列。因此,可以利用改变直接穿过SPV或MTJ的电流方向和大小,来改变它们的磁化取向。自由层在MTJ作用下所产生的磁进动。我们假定磁性薄膜具有单轴磁各向异性,易磁化轴与图中磁场方向一致,可视为易磁化方向的等效场,即外磁场与易向各向异性场之和。M表示磁性薄膜的磁化,外加自旋电流对M产生的STT使M离开H的方向,表示磁化与H的夹角。STT的力矩与M的磁阻尼矩方向相反,从而有克服磁阻尼矩对M的作用。4仿真分析41仿真分析及模型建立我们知道,影响自旋波激发的因素有结构参数、材料磁参数、外加磁场、驱动电流,现在我们立足于铁磁性隧道结MTJ纳米柱的自旋阀结构中,利用微磁模拟研究外加磁场与驱动电流的影响,即其实质是在固定的结构参数和材料磁参数下研究外加磁场和驱动电流对微波频率的影响。即在这种情况下研究电流驱动微波振荡器特性。先根据模型和公式编写程序MIF文件,再用OOMMF软件将MIF文件生成OMF文件,然后将MIF文件和生成的OMF文件用OOMMF软件生成ODT文件,最后ORIGIN85进行仿真,傅里叶变换,最终生成仿真图。立足于文献9和文献10的详细分析围绕以下LLG方程建模,电子传导时旋转演变过程随时间变化合成的一个LLG常微分方(LANDAULIFSHITZGILBERT10ODE)增大了旋转动量。根据式(22)和式(25)式修正得(41)式。PPEFFDTDHDTDMM|MMM|MM|M41其中STMJE|0,MM11222PP,MM/MS为为归一化的自由层磁化矢量,为自旋极化率,为GILBERT阻尼常数,为GILBERT磁场自旋极化比,MP为单位电子极化方向,是二级旋转翻转时间。HEFF是有效磁场包括外磁场,退磁场,各向异性场等。在对的定义式中,E表示单元电子电荷量,单位为C,J则表示电流密度单位为A/M2,T是自由层厚度,单位为米,以及MS是饱和磁化量,单位为A/M。其中所用到计算频率的公式(42),式(43),式(44)如下所示。参考文献10。42EFFDDANMHHHHHFPIPI(42)12220DEXTDCHHHHFPIDEXTHH;(44)据文献15和文献16所述。铁磁性纳米材料CU80/CO40/CU10/CO3/CU2/PT30MTJ结构相应的参数取为MS80105A/M,各向异性场HK0,退磁因子NNX,NY,NZ002,002,096,自旋极化率03,自由层厚度D25NM,阻尼系数001,设定钉扎层磁化矢量沿X正方向,自由层磁化矢量初始时沿X负方向(1,0,0),即初始时两铁磁层磁化矢量的取向为反平行状态。外磁场取沿X正方向(1,0,0),大小为0MT100MT的范围内进行仿真。42外加磁场对微波频率的影响从理论上分析,电流为零时外加磁场的作用起主要作用,自由层磁化矢量最终将会沿正X方向在此过程中,由于外加磁场作用和自旋转移矩效应之间的相互竞争,会使自由层磁化矢量产生振荡行为,当电流密度为零时,即J0时,其频率完全取决于外磁场大小的作用,那么我们暂且讨论外磁场对微波频率的影响。接下来我们先来分析假设在电流为零的情况下,外加磁场是怎样影响微波频率的带着这个问题研究外加磁场对微波频率的影响。1102468101214161820024681012141618200246810121416182002468101214161820024681012141618200246810121416182002468101214161820024681012141618200246810121416182002468101214161820024681012141618200MT10MT20MT30MT40MT50MT60MT70MT80MT90MT100MTFREQUENCYGHZ图41外磁场对微波频率的影响又对同电流密度(031011A/M2)时的各外加磁场0MT100MT所对应的波形图进行分析,如图41所示,发现振幅的波的主峰峰值所对应的频率随外加磁场增大而增大,我们可以从图41明显观看到此现象。通过对图41整理和归纳,可得到图42,更加显而易见的凸显出外磁场与微波频率的关系,即外加磁场与微波频率成正相关变化。从附录图A1可直接看到效果。结论微波频率与外磁场的关系符合传统铁磁共振原理。这个结论可从文献11中得知。0MT10MT20MT30MT40MT50MT60MT70MT80MT90MT100MT567891011FREQUENCYGHZEXTERNALMAGNETICFIELD图42外磁场与微波主峰频率的关系图1243驱动电流对微波频率的影响及最佳电流密度首先,从图45和图46的对比明显可以看到驱动电流对微波频率有很大的影响,实际情况是我们需要分析在不考虑外加磁场影响的情况下,得到最佳电流密度使得到最佳的自旋激发波,于是我们先取50组数据进行仿真,从而我们可以得到相对稳定的电流范围,继而从中得到最佳电流,其既可以激发非常稳定的自旋波,又可以减少外加磁场对其的影响。那么首先是否能得到电流密度的大小对微波频率有什么样的影响其次是否能通过仿真得到一个能产生稳定自旋波的电流密度范围呢围绕这两个问题讨论。其次对其进行仿真分析,在无外加磁场的情况下(即H0),当J0时,我们可以看到其幅度相较于J不等于零时幅度可以忽略不计,说明电流对微波及微波频率有很大影响。这一点从附录表B1中比较数据可以看出,在电流密度为0到301011A/M2的范围内分别取值10组数据仿真分析,仿真图如43所示。02468100246810024681002468100246810024681002468100246810FREQUENCYGHZJ0J101011A/M2J131011A/M2J151011A/M2J171011A/M2J201011A/M2J231011A/M2J251011A/M2图43无外磁场时电流密度对微波频率的影响从图43电流密度对微波频率的影响可以初步推断微波频率随电流密度增大而减小,并且可得知最佳电流密度应该在J201011A/M2附近。通过对图43的分析整理可以总结得出图44电流密度与微波频率的关系图REQUENCYOFMAINWAVECRESTGHZCURRENTDENSITY1011A/M2图44电流密度与微波主峰频率的关系图如图44所示,我们可以从图44中看出各电流密度所取的波的主峰峰值所对应的频率随电流密度的增大而减小。这说明电流密度与微波频率成反向关系,也就是说电流密度反作用于微波频率。这与大部分实验给出的随电流增大频率下降的结论相符。这个结论来自于文献12中。从附录表B1可以得知当电流为零时,微波频率受到外加磁场比较明显的影响,仿真图出现很多的波峰,如图45所示。这说明微波受到外加磁场的干扰而变化多端,因此我们知道纯粹的外加磁场影响下是不能得到稳定的持久进动的自旋波激发,我们必须得想办法将这些干扰去掉,从而得到稳定的自旋波。而电流驱动的微波振荡器件可以较好的处理这个问题,那么最适合大小的电流密度将是我们接下来研究的重点。从图44中可以观察到在电流密度为11011A/M2到251011A/M2之间是相对稳定,没有太大的变化,反之,超出这个范围就成指数变化,很不稳定,由此可以推断我们所要求的使产生稳定自旋波的电流密度值范围应该在11011A/M2到251011A/M2之间。目的是在找出一个最佳的电流密度值使得微波器件能产生一个稳定的持久进动的自旋波激发的微波频率。理由是这样的一个电流密度能够很好的克服外界的干扰,从而输出稳定的微波频率。为了探索电流密度对微波频率的影响,采用有、无电流进行仿真对比。通过14仿真,得到J0,J1751011A/M2的频率振幅仿真图如图45和图46所示。通过对比分析,能够明显观察到两图的巨大差异,由此可知电流密度对微波频率有很大的影响。J1751011A/M2的产生频率明显比J0时产生的频率0246810200E019000E000200E019400E019600E019800E019100E018120E018140E018160E018AMPLITUDEFREQUENCY024681000000005001000150020AMPLITUDEFREQUENCY图45无外磁场J0时的频幅图图46无外磁场J1751011A/M2时频幅图在外磁场为零的情况下,当J1751011A/M2时,这个仿真图45是我们从电流密度J0到J31011A/M2的60个的仿真图中选出的最佳的图像,此图只有2个波峰,与图44中J0时相比显得相当的稳定,相对比较理想,较好的克服了其他的因素。并且我们还可以从此图与得知图44中J0时比较,发现幅度值受电流的影响远远大于外加磁场带来的影响,从而我们可以得到另一个结论无外加磁场时的最佳电流密度应该在J1751011A/M2的附近。但此图与理想模型显然还有差别,其中的二级波还是比较明显,是因为没有外加磁场的磁化反转对各个方向自旋极化电流的牵制作用。所以还存在其他方向的波的干扰,使其不能产生稳定的持久进动的自旋波激发。对于这个最佳电流密度值能产生多大的稳定的微波频率呢从附录表B1也可以得知,明显可以看出其波的主峰峰值的取值在频率6109HZ附近,可知驱动电流对微波的影响和外加磁场对微波频率的影响刚好调制出频率为6109HZ的微波。在这里再做一个反向验证,可以先选定一个频率为6109HZ的微波,然后将在这个频率6109HZ的基础上通过仿真分析得到最佳电流密度是不是J1751011A/M2通过仿真,如图47所示的电流密度对微波稳定性的影响,结论是这个电流可以产生大小为6109HZ且十分稳定的的微波。15000510152025302468101214161820221011A/M2NUMBEROFWAVECRESTCURRENTDENSITY图47无外磁场时电流密度对微波稳定性的影响由附录表B1可知,观察各电流的波的主峰峰值,发现电流密度大于251011A/M2很不稳定,极性瞬间改变,受电流影响较大,而电流密度在11011A/M2到251011A/M2范围内相对稳定,从而可以得到产生稳定自旋波的电流密度范围为11011A/M2到251011A/M2,得到的结论与前面几次仿真相吻合。并且在这个范围内可以得到最大波峰的电流密度,即J1751011A/M2,我们将其作为最佳电流密度,即稳定范围内的取得波的主峰峰值的电流密度。然后将波的主峰峰值得分布进行研究,得到产生稳定自旋波的电流密度范围是否跟之前结论相吻合。这正好验证了微波频率与外磁场的关系符合传统铁磁共振原理。当外加磁场为10MT时,随着负向电流的增大,当自旋转移矩效应被增加到可以和外加磁场作用相比拟时,自由层磁化矢量则形成周期性振荡,其中电流密度展示了两个分量X和Y随时间的变化,其自旋振荡轨迹在X和Y平面上,经过短暂的暂态过程,磁化矢量很快进入了一个面内转动的周期轨道,同时在正方向和负方向上均有一定的分量,这种周期性振荡对应于振荡模式在自旋运动过程中可知,当达到其极小值后便反向返回,从而形成周期性振荡,以下我们令外加磁场为零时分析电流对微波频率的影响,由附录2中附录表B1可得最佳的电流密度J201011A/M2,通过仿真,结论正如仿真结果图48所示。16J301011A/M2J201011A/M2J151011A/M2J101011A/M2TIMEAMPLITUDE0J251011A/M2图48微波振幅随时间的变化当外加磁场在0MT100MT范围内,通过132组数据仿真图可得,并由附录表B1可以得知,可引起自激振荡并且持续振荡的条件为电流密度为J201011A/M2值附近时。通过仿真,得到图46如下所示。从图45所示可以看到一个良好的周期性可持续振荡及自激振荡行为。由此也可以看出电流密度J201011A/M2是非常合适的电流密度。另外从附录图A2中也可观察到这中现象,从图41和图42中还可以得到振荡频率随外加磁场增大而增大。这让我们找到了外加磁场大小与微波频率的关系是正相关性。综上所述,得到最佳电流密度J201011A/M2,为进一步确认这个最佳电流密度,对其进行仿真分析验证,观察其是否能够很好地克服外界因素的干扰,从而输出很稳定的微波频率通过仿真来说明问题,仿真图49最佳电流密度J201011A/M2的微波频幅图如图所示。与之前的仿真图有很大的改善,此图时外加磁场和驱动电流一次很好地融合,很好地克服了两者单一工作带来对微波频率的干扰,从而输出非常稳定的微波频率。这是一个相对理想的结果。1702468101214161820AMPLITUDEFREQUENCYGHZ050108101071510720107图49最佳电流密度J201011A/M2的微波频幅图与前面仿真对比验证,电流密度J60109A/M2的仿真图是J0到J201011A/M2最稳定的,而且跟之前的猜想在J201011A/M2附近相吻合,因此再次验证电流密度J201011是最佳的电流密度值。但是我们没有看到二级波完全消掉,从电子极化图48可以看出,不能完全消除小波峰的原因电子自旋和磁场极化引起的各个方向的偏移,不能使其电流和外加磁场对频率的作用效果完全抵消。图410磁场引起电子极化偏转图根据所有图示的综合归纳各外加磁场所对应的最佳电流图示,得出最佳电流密度为201011A/M2,如图46所示,通过仿真图的对比发现,这个最佳电流密度能够使电流驱动微波器件产生的微波具有周期性可持续振荡及自激振荡行18为。而且具有更宽的可调频率范围,因此通过改变电流密度来选择频率是一个很好的选择。我们通过这一系列的仿真分析对外加磁场及驱动电流对微波频率的影响有了深刻的了解。这对进一步探究电流驱动微波振荡器特性有重大意义。结论结论结论结论通过仿真分析,我们对外加磁场及驱动电流对电流驱动微波振荡器的微波频率的影响有了更加深刻的认识。在铁磁性隧道结(MTJ)结构中,当输入电流一定时,微波振荡器的微波频率随外加磁场增大而增大,且在外磁场为10MT时微波振荡器的微波频谱出现两个本征特征峰,且最佳电流密度为J201011A/M2微波次峰值最小。无外加磁场时,仅在电流的驱动下微波振荡器的微波频谱出现多个本征特征峰,且数目随电流密度的增大先减少而后增多,当电流密度J17501011A/M2时只出现三个波峰,其中微波主峰对应的频率随电流密度增大而减小。在这些最佳电流密度下电流驱动微波振荡器可产生具有周期可持续性及自激振荡的微波。正因为这样,通过恰当的调控外加磁场和驱动电流使自由层获得最大的横向自旋注入,从而产生大幅度的自旋进动,有利于获得大的微波功率输出,与采用交变磁场激发自旋波的传统方法相比,这种基于自旋转移矩效应而设计的新型自旋波激发方法表现出两个优点首先电流调控磁性薄膜的磁化状态比磁场更容易实现局域控制的;其次通过调节电流强度可以方便地实现不同频率的高频微波并且不需要外加磁场。而且结构简单,功耗低,易与CMOS结合便于集成等优点。参考文献参考文献参考文献参考文献1SLONCZEWSKIJCCURRENTDRIVENEXCITATIONOFMAGNETICMULTILAYERSJJMAGNMAGNMATER,1996,15912L1L72BERGERLEMISSIONOFSPINWAVESBYAMAGNETICMULTILAYERTRAVERSEDBYACURRENTJPHYSREVB,1996,5413935393583FULLERTONE,MOUGINA,RAVELOSONAD,ETALTOPICALISSUEONNEWTRENDSINSPINTRANSFERPHYSICSJEURPHYSJB,2007,5944134144XIAOJ,ZANGWILLA,STILESMDMACROSPINMODELSOFSPINTRANSFERDYNAMICSJPHYSREVB,2005,7210144461014446135LEEK,DEACA,REDONO,ETALEXCITATIONSOFINCOHERENTSPINWAVESDUETOSPINTRANSFERTORQUEJNATUREMATERIALS,2004,312877881196姜勇,方慧智,黎子兰等自旋角动量转移效应的实验研究J半导体学报,2004,2555265287张磊,邓宁,李杰民等纳米磁多层结构中电流驱动自旋波发射J人工晶体学报,2005,3434664698陈培毅,冯玉春,王文欣等自旋转移矩效应激发的非线性磁化动力学J物理学报,2006,557360636109张磊,邓宁自旋电子学和自旋电子器件J微纳电子技术,2004,41315,2010任敏,陈培毅,张磊等一种新的自旋量子效应电流感应磁化翻转J微纳电子技术,2006,4312553557,58111朱正涌微磁学简M北京清华大学出版社,200112赵振杰自旋角动量转移矩效应M北京清华大学出版社,2002致谢历时将近两个月的时间终于将这篇论文写完,我要感谢,非常感谢我的指导老师张光富老师老师。他为人随和热情,治学严谨细心。在闲聊中他总是能像知心朋友一样鼓励你,在论文的写作和措辞等方面他也总会以“专业标准”严格要求你,从选题、定题开始,一直到最后论文的反复修改、润色,张老师始终认真负责地给予我深刻而细致地指导,不厌其烦的帮助进行论文的修改和改进,帮助我开拓研究思路,精心点拨、热忱鼓励。正是张老师的无私帮助与热忱鼓励,我的毕业论文才能够得以顺利完成,再次谢谢张老师还有,在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了他们对我进行了无私的指导和帮助。在此向帮助和指导过我的各位老师和同学表示最中心的感谢感谢这篇论文所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。感谢我的同学和朋友,在我写论文的过程中给予我了很多你问素材,还在论文的撰写和排版灯过程中提供热情的帮助。由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正20附录附录图A1TIME0MT10MT50MT100MTAMPLITUDE微波振幅随时间变化图附录表B1无外磁场时J(1011A/M2)主波峰对应的频率主波峰峰值频率为6GHZ时的波峰值频率在010GHZ范围内波峰个数083967E0924200E0324200E0321100E0059972E0986600E0386600E031310559972E0983500E0383500E03121159972E0977800E0377800E031211559973E0976900E0376900E03111261972E0975600E0371300E031112559973E0988300E0388300E03101359973E0983500E0383500E03913559973E0990000E0390000E0391459973E0997600E0397600E03814559973E0992300E0392300E0381559973E0910800E0210800E02715559973E0910550E0210550E0271659973E0910280E0210280E02616559973E0910460E0210460E025211757974E0911280E0291500E03417553975E0913260E0291800E0331853975E0911700E0295900E03418557973E0915040E0211470E0251957973E0917830E0213000E02619557973E0917980E0214100E026257973E0918830E0213950E02720557973E0921550E0213060E0272151976E0923120E0284000E03821551976E0926420E0273800E0382255974E0924370E0270400E03922549977E0932310E0250300E0392349977E0933530E0260400E031023547978E0938050E0281800E03102445979E0936730E0256900E031124543980E0937860

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论