




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抽屉原理如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。抽屉原理2:将多于mn件的物品任意放到n个抽屉中
2、,那么至少有一个抽屉中的物品的件数不少于m+l。假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过mn件。这与多于mn件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。【例1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入36
3、6个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。【例2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少
4、有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。买书的类型有:买一本的:有语文、数学、外语3种。买二本的:有语文和数学、语文和外语、数学和外语3种。买三本的:有语文、数学和外语1种。3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。【小试牛刀】某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?【解析】买书的类型中买一本的有4种,买二本的有6种,买三本的有4种,
5、买4本的有一种,共有4+6+4+115种情况。把种15种情况看出15个抽屉,要保证有两位同学买到相同的书,至少要去16位学生。【例3】一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?【解析】把四种颜色看成是4个抽屉,要保证有3副同色的,先考虑保证有一副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套又能保证有一副手套是同色的。以此类推,要保证有3副同色的,共摸出的手套有5+2+2=9(只)【小试牛刀】布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问:最少要摸出多少只
6、袜子,才能保证有3双同色的?【解析】把三种颜色看作3个抽屉,要保证有一双同色的就要摸出4只袜子,这时拿出1双同色的后,3个抽屉中还剩2只袜子。以后,只要再摸出2只袜子就可保证有一双同色的。因此,要保证有3双同色的,最少要摸4+2+28只袜子。【例4】任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?【解析】一个自然数除以4的余数可能是0,1,2,3,所以,把这4种情况看做时个抽屉,把任意5个不相同的自然数看做5个元素,再根据抽屉原理,必有一个抽屉中至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。所以,任意5个不相同的自然数,其中至少有两个数的差是4的倍数。【小
7、试牛刀】证明在任意的(n+1)个不相同的自然数中,必有两个数之差为n的倍数。【解析】一个自然数除以n的余数可能是0、1、2、3、.n1,把这n种情况看作n个抽屉,把(n+1)个自然数反复如n个抽屉中去,则必有一个抽屉中有两个数,这两个数的余数相同,则它们的差一定能被n整除,也就是n的倍数。【例5】幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?【解析】把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=1203+4,4120。根据抽屉原理的第(2)条规则:如果把mxk(xk1)个元素放到x个抽屉里,那么至少有一个抽屉里含有
8、m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。【小试牛刀】一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?【解析】把40名小朋友看做40个抽屉,将125件玩具放入这些抽屉,因为125340+5,根据抽屉原理,可知至少有一个抽屉有4件或4件以上的玩具,所以肯定有人会得到4件或4件以上的玩具。【例6】布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?【解析】把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽屉原理第(2)条,要使其中一
9、个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即24+1=9(个)球。列算式为 (31)4+1=9(个)【小试牛刀】一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?【解析】至少取出(41)3+110块木块。【例7】某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?【解析】参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型
10、,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。把4+6+4+1=15(种)类型看做15个抽屉,把46个学生放入这些抽屉,因为46=315+1,所以班级中至少有4名学生参加的项目完全相同。【小试牛刀】某班有37个学生,他们都订阅了小主人报、少年文艺、小学生优秀作文三种报刊中的一、二、三种。其中至少有几位同学订的报刊相同?【解析】全班订阅报刊的类型共有3+3+17种,因为3757+2,所以其中至少有6位学生订的报刊相同。【例8】将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明:找少有七名同学得到的卡片的张数相同。【解析】这题需要灵活运用抽屉原
11、理。将分得1,2,3,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+10+11=66(张)卡片。而40066=64(张),即每个周体都有6个元素,还余下4张卡片没分掉。而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到的卡片的张数相同。【小试牛刀】把280个桃分给若干只猴子,每只猴子不超过10个。证明:无论怎样分,至少有6只猴子得到的桃一样多。【解析】略【例9】用黑、白、红三种颜色将一个27方格图(如下图)中的每个小方格随意涂上颜色,而且每个小方格只涂一种颜色,同列小方格颜色不同。问:是否存在两列,它们的小方格中涂的颜色完
12、全相同?【解析】用三种颜色给每列中的两个小方格随意涂色,会有以下6种情况。将这6种情况看成6个抽屉,将7列分别放入6个抽屉中,根据抽屉原理1,至少有一个抽屉中不少于两列,那么总有两列的小方格中涂的颜色完全相同。【小试牛刀】在长度是15厘米的线段上任意取6个点,是否至少有两个点,它们之间的距离不大于3厘米?【解析】因为153=5,所以将15厘米长的线段每3厘米分成一份,总共分成5份,并以此作为5个抽屉。根据抽屉原则1,在这条线段上任意取6个点时,至少有一个抽屉中被放入了两个点。那么它们之间的距离一定不大于3厘米。【例10】一个口袋中有50个编上号码的相同的小球,其中编号为l、2、3、4、5的各有
13、10个。问:一次至少要取出多少小球,才能保证其中至少有4个号码相同的小球?【解析】一次至少要取出16个小球才能保证其中至少有4个号码相同的小球。【小试牛刀】把154本图书分给四年级某班的同学,如果不管怎样分,都至少有一位同学会分得4本或4本以上的图书,那么这个班最多有多少名学生?【解析】此题是逆用抽屉原理2,要求有多少个抽屉。由“至少有一位同学分得4本或4本以上的图书”,可知m+1=4,那么m=3,又因为154=351+l,得n=51,那么这个班最多有51名学生。因为154(4-l)=51l所以这个班至少有51名学生。【例11】有120名学生从A、B、C三人中自己投票选举一人做三好学生,投票时
14、每人只能投一次,且只能选一个人。得票最多的人当选。统计票数的过程中发现,在前81张选票中,A得21票,B得25票,C得35票。在余下的选票中,C至少再得几张选票就一定能当选?【解析】剩下未统计的选票有:120-81=39(张),在已统计出的选票中,C得票最多,其次是B,B比C少得35-25=10(票)。从最不利的方面考虑,让接下来的10票都给B,那么还剩下39-10=29(张)选票。根据抽屉原理2,把B、C两人做为2个抽屉,由于292=14l,那么C至少再得14+1=15(张)选票就一定能当选。 120-81-(35-25)2=29214114+1=15在余下的选票中,C至少要再得15张选票就
15、一定能当选。【例12】从1,2,3,1988,1989这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?【解析】1,2,3,4,9,10,1l,12,17,18,19,20,25, 这些数中任何两个数的差都不为4,这些数是每8个连续的数中选取前4个连续的数 有19898=2485,所以最多可以选2484+4=996个数评注:对于这类问题,一种方法是先尽可能的多选择,然后再找出这些数的规律,再计算出最多可以选出多少个.【小试牛刀】从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?【解析】1,3,6,8,11,13,16,18,21,这些
16、数中任何两个数不连续且差不等于4,这些数是每5个连续的数中选择第1、3个数19935=3983.所以最多可以选3982+2=798个数1.某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?【解析】 2月份最多有29天,把它看作29个抽屉,把30名学生放入29个抽屉,至少有一个抽屉里有两个人,因此这30名学生中至少有两个学生的生日是在同一天。215个小朋友中,至少有几个小朋友在同一个月出生?【解析】 一年有12个月,把12个月看作12个抽屉,把15个小朋友放入12个抽屉中,至少有一个抽屉里有两个小朋友,因此至少有2个小朋友是才同一个月出生。3.一个布袋里有红、黄、蓝色袜子各8只。
17、每次从布袋中拿出一只袜子,最少要拿出多少只才能保证其中至少有2双不同袜子?【解析】袋中有三种袜子时。每次从袋中拿出一只袜子,有可能拿出8只都是同一颜色。在余下两种颜色中要拿出一双同色的袜子,最少要取3只。因此,最少要拿出8+311只才能保证其中至少有2双颜色不同的袜子。4.把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【解析】把盒子数看成抽屉,要使其中一个抽屉里至少有7个球,那么球的个数至少应比抽屉个数的(71)倍多1,而254(71)+1,所以最多方子4个盒子里,才能保证至少有一个盒子里有7个球。5.学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以
18、不参加)。某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?【解析】参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个组的有6种类型,只参加三个字的有4种类型,参加四个组的有1种类型。把4+6+4+115种类型看作15个抽屉,把46个学生放入这些抽屉,因为46153+1,所以班级中至少有4名学生参加的项目完全相同。6.四年级某班有45名同学,那么在这45名同学中至少有几个人在同一个月中出生?【解析】至少有4个人在同一个月中出生。7学校开办了外语、音乐、体育、美术四个课外活动小组,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于6名同学参加课外活动小组的情况完全相同?【解析】参加学习班的情况有:不参加活动小组有1种情况,只参加一个活动小组有4种情况,参加两个活
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行投诉处理与消费者权益保护计划
- XX小学应对大班额的改进措施
- 2025年降台铣床项目发展计划
- 2025年复配色粉项目合作计划书
- 肱骨解剖颈骨折的健康教育
- 2025年铁路轨枕垫项目合作计划书
- 二零二五年度农产品采购合同质量保证与追溯协议
- 二零二五年服装店长聘用合同范本:品质生活引领者
- 二零二五版酒店管理及客房预订服务合同范本大全
- 二零二五年度供暖管道材料买卖合同范本
- 金属钛化学品安全技术说明书MSDS
- 吴式太极拳八十三式(326动)顺序详解(精)
- 一个人的老後
- 籍贯对照表完整版
- 2023年成人高考试题及答案
- 毕业生就业推荐表word模板
- 浙江2023年温岭农商行招聘笔试上岸提分题库3套【500题带答案含详解】
- YS/T 1163-2016粗铟
- GB/T 37214-2018陶瓷外墙砖通用技术要求
- 国家排污许可系统填报培训课件
- 飞行性能-飞行计划课件
评论
0/150
提交评论