




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2椭圆常用结论一、椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率(点与线成对出现,左对左,右对右)对于,左准线;右准线对于,下准线;上准线椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 焦点到准线的距离(焦参数)xOF1F2PyA2A1B1B2二、焦半径圆锥曲线上任意一点与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。椭圆的焦半径公式:焦点在轴(左焦半径),(右焦半径),其中是离心率 焦点在y轴 其中分别是椭圆的下上焦点 焦半径公式的两种形式的区别只和焦点的左右有关,而与点
2、在左在右无关 可以记为:左加右减,上减下加推导:以焦点在轴为例如上图,设椭圆上一点,在y轴左边.根据椭圆第二定义,则 同理可得三、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在轴为例,弦坐标:,弦长度: 四、若是椭圆:上的点.为焦点,若,则的面积为 .推导:如图 根据余弦定理,得 = = = = 得 =xOF1F2PyA2A1B1B2五、弦长公式 直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算.当直线斜率不存在是,则.六、圆锥曲线的中点弦
3、问题:(1)椭圆中点弦的斜率公式:设为椭圆弦(不平行轴)的中点,则有: 证明:设,则有, 两式相减得:整理得:,即,因为是弦的中点,所以,所以(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;由(1)得七、椭圆的参数方程八、共离心率的椭圆系的方程:椭圆的离心率是,方程是大于的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.例1、已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_例2、如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 例3、已知直线与椭圆相交于、两点,且线段的中点在直线:上,则此椭圆的离心率为_例4、是椭圆的右焦点,为椭圆内一定点,为椭圆上一动点。(1)的最小值为 (2)的最小值为 分析:为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。解:(1) 设另一焦点为,则(-1,0)连, 当是的延长线与椭圆的交点时, 取得最小值为4-。 (2)作出右准线l,作交于,因, 所以,.当、三点共线时,其和最小,最小值为例5、求椭圆上的点到直线的距离的最小值例6、椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中政治3.1说课课件
- 2025年中国自动化仪表行业市场前景及投资研究报告
- 高一急救知识培训班课件
- 智能化施工安全防护空白单位工程劳务分包合同
- 离婚子女抚养权归属与财产分割及子女社会实践协议
- 离婚协议签署及履行监督服务合同
- 离婚协议:财产分割、子女抚养及共同财产清算合同
- 民族特色理发店技师劳务合作合同范本
- 广告内容本地化代理合同
- 职业技能拓展方案设计
- 乡镇报灾系统培训课件
- 保护牙齿少吃糖公开课课件
- 如何辅导初中数学差生
- 《病史采集》课件
- 职业病危害因素评价与检测课件
- 财务报销培训课件
- 《慢性病综合防治》课件
- 《物理学史讲座》课件
- 安全风险预警与应急响应的能力评估
- 新媒体运营 课程标准
- 西师大版五年级音乐上册 第一单元《走街街》 课件走 街 街
评论
0/150
提交评论