




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、要点梳理 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(xD),把使_成立的实数x叫 做函数y=f(x)(xD)的零点.,2.7 函数与方程,f(x)=0,基础知识 自主学习,(2)几个等价关系 方程f(x)=0有实数根 函数y=f(x)的图象与_有 交点 函数y=f(x)有_. (3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间a,b上的图象是连续不 断的一条曲线,并且有_,那么函 数y=f(x)在区间_内有零点,即存在c(a,b), 使得_,这个_也就是f(x)=0的根.,f(a)f(b)0,(a,b),f(c)=0,c,x轴,零点,2.二次函数y=ax2+b
2、x+c (a0)的图象与零点的关系,(x1,0), (x2,0),(x1,0),无,一个,两个,3.二分法 (1)二分法的定义 对于在区间a,b上连续不断且_的 函数y=f(x),通过不断地把函数f(x)的零点所在的区 间_,使区间的两个端点逐步逼近_,进 而得到零点近似值的方法叫做二分法. (2)用二分法求函数f(x)零点近似值的步骤 第一步,确定区间a,b,验证_, 给定精确度 ; 第二步,求区间(a,b)的中点x1;,f(a)f(b)0,一分为二,零点,f(a)f(b)0,第三步,计算_: 若_,则x1就是函数的零点; 若_,则令b=x1 (此时零点x0(a,x1); 若_,则令a=x1
3、 (此时零点x0(x1,b); 第四步,判断是否达到精确度 :即若|a-b| ,则 得到零点近似值a(或b); 否则重复第二、三、四步.,f(x1),f(a)f(x1)0,f(x1)f(b)0,f(x1)=0,基础自测 1.若函数f(x)=ax+b有一个零点为2,则g(x)=bx2-ax的 零点是 ( ) A.0,2 B.0, C.0, D.2, 解析 由f(2)=2a+b=0,得b=-2a, g(x)=-2ax2-ax=-ax(2x+1). 令g(x)=0,得x=0,x= g(x)的零点为0,,C,2.函数f(x)=3ax-2a+1在-1,1上存在一个零点, 则a的取值范围是 ( ) A.
4、B.a1 C. D. 解析 f(x)=3ax-2a+1在-1,1上存在一个零点, 则f(-1)f(1)0,即,D,3.函数图象与x轴均有公共点,但不能用二分法求公 共点横坐标的是 ( ) 解析 图B不存在包含公共点的闭区间a,b使函 数f(a)f(b)0.,B,4.下列函数中在区间1,2上一定有零点的是( ) A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5 C.f(x)=mx2-3x+6 D.f(x)=ex+3x-6 解析 对选项D,f(1)=e-30, f(1)f(2)0.,D,5.设函数 则函数f(x)- 的零点是_. 解析 当x1时, 当x1时, (舍去大于1的根). 的零
5、点为,题型一 零点的判断 【例1】判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x1,8; (2)f(x)=log2(x+2)-x,x1,3.,题型分类 深度剖析,解 (1)方法一 f(1)=12-31-18=-200, f(1) f(8)0, 故f(x)=x2-3x-18,x1,8存在零点. 方法二 令f(x)=0,得x2-3x-18=0,x1,8. (x-6)(x+3)=0,x=61,8,x=-31,8, f(x)=x2-3x-18,x1,8有零点.,(2)方法一 f(1)=log23-1log22-1=0, f(3)=log25-3log28-3=0, f(1
6、) f(3)0, 故f(x)=log2(x+2)-x,x1,3存在零点. 方法二 设y=log2(x+2),y=x,在同一直角坐标系 中画出它们的图象,,从图象中可以看出当1x3时, 两图象有一个交点, 因此f(x)=log2(x+2)-x, x1,3存在零点. 函数的零点存在性问题常用的办法 有三种:一是用定理,二是解方程,三是用图象.值得 说明的是,零点存在性定理是充分条件,而并非是 必要条件.,探究提高,知能迁移1 判断下列函数在给定区间上是否存 在零点. (1)f(x)=x3+1; (2) x(0,1). 解 (1)f(x)=x3+1=(x+1)(x2-x+1), 令f(x)=0,即(
7、x+1)(x2-x+1)=0,x=-1, f(x)=x3+1有零点-1. (2)方法一 令f(x)=0, x=1, 而1 (0,1), x(0,1)不存在零点.,方法二 令 y=x,在同一平面直角坐标系中, 作出它们的图象,从图中可以看出当0x1时,两图象 没有交点. 故 x(0,1)没有零点.,题型二 函数零点个数的判断 【例2】求函数y=ln x+2x-6的零点个数.,解 在同一坐标系画出 y=ln x与y=6-2x的图象,由 图可知两图象只有一个交点, 故函数y=ln x+2x-6只有一个 零点. 若采用基本作图法,画出函数y=ln x+ 2x-6的图象求零点个数,则太冗长.构造新函数y
8、=ln x 与y=6-2x,用数形结合法求交点,则简洁明快.,探究提高,B,题型三 零点性质的应用 【例3】(12分)已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x0). (1)若g(x)=m有零点,求m的取值范围; (2)确定m的取值范围,使得g(x)-f(x)=0有两个 相异实根. (1)可结合图象也可解方程求之. (2)利用图象求解.,思维启迪,解题示范 解 (1)方法一 等号成立的条件是x=e. 故g(x)的值域是2e,+), 4分 因而只需m2e,则 g(x)=m就有零点. 6分 方法二 作出 的图象如图: 4分 可知若使g(x)=m有零点,则只需m2e. 6分,方法
9、三 解方程由g(x)=m,得x2-mx+e2=0. 此方程有大于零的根, 4分 等价于 故m2e. 6分 (2)若g(x)-f(x)=0有两个相异的实根, 即g(x)=f(x)中函数g(x)与f(x)的图象有两个 不同的交点,,作出 (x0)的图象. f(x)=-x2+2ex+m-1 =-(x-e)2+m-1+e2. 其对称轴为x=e,开口向下, 最大值为m-1+e2. 10分 故当m-1+e22e,即m-e2+2e+1时, g(x)与f(x)有两个交点, 即g(x)-f(x)=0有两个相异实根. m的取值范围是(-e2+2e+1,+). 12分,此类利用零点求参数的范围的问题,可 利用方程,
10、但有时不易甚至不可能解出,而转化为构 造两函数图象求解,使得问题简单明了.这也体现了 当不是求零点,而是利用零点的个数,或有零点时求 参数的范围,一般采用数形结合法求解.,探究提高,知能迁移3 是否存在这样的实数a,使函数f(x)=x2+ (3a-2)x+a-1在区间-1,3上与x轴恒有一个零点, 且只有一个零点.若存在,求出范围,若不存在,说 明理由. 解 =(3a-2)2-4(a-1)0 若实数a满足条件,则只需f(-1)f(3)0即可. f(-1)f(3)=(1-3a+2+a-1)(9+9a-6+a-1) =4(1-a)(5a+1)0. 所以a 或a1.,检验:(1)当f(-1)=0时,
11、a=1.所以f(x)=x2+x. 令f(x)=0,即x2+x=0,得x=0或x=-1. 方程在-1,3上有两根,不合题意,故a1. (2)当f(3)=0时,a= 解之得x= 或x=3. 方程在-1,3上有两根,不合题意,故a 综上所述,a1.,1.函数零点的判定常用的方法有:零点存在性定 理;数形结合;解方程f(x)=0. 2.研究方程f(x)=g(x)的解,实质就是研究G(x)= f(x)-g(x)的零点. 3.二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在 的范围,当达到一定的精确度要求时,所得区间的 任一点就是这个函数零点的近似值.,方法与技巧,思想方法 感悟提高,1.对于函数y=f(x)(xD),我们把使f(x)=0的实数x叫 做函数的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个 实数时,其函数值等于零.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国抗菌肽项目创业计划书
- 2025年泰盈复合材料制品厂建设项目环评报告表
- 大同市中医院IgG4相关疾病诊疗思路考核
- 黑河市人民医院抗体鉴定技术考核
- 中国切削油项目创业计划书
- 中国无机鞣料项目创业计划书
- 邢台市人民医院神经电生理室主任技术管理考核
- 鸡西市人民医院风险管理与内部控制运营视角试题
- 晋城市人民医院脑死亡判定脑电图考核
- 中国矿物油增稠剂项目经营分析报告
- 电焊工职业健康安全培训
- 速冻食品生产和经营卫生规范培训
- 微塑料污染对淡水生态的威胁-洞察及研究
- 急诊床旁超声诊断
- 中国零售行业分析
- 地铁礼仪知识课件
- 课件-领越领导力
- 学堂在线 军事历史-第二次世界大战史 期末考试答案
- 电梯司机培训内容大纲
- 公安新闻宣传课件
- 钢制防火门维修合同范本
评论
0/150
提交评论