2020年牡丹江市人教版七年级上学期期中数学试卷含答案解析_第1页
2020年牡丹江市人教版七年级上学期期中数学试卷含答案解析_第2页
2020年牡丹江市人教版七年级上学期期中数学试卷含答案解析_第3页
2020年牡丹江市人教版七年级上学期期中数学试卷含答案解析_第4页
2020年牡丹江市人教版七年级上学期期中数学试卷含答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020学年黑龙江省牡丹江市七年级(上)期中数学试卷一、选择题:每小题3分,共30分1如果收入1000元记作+1000元,那么“300元”表示()A收入300元B支出300元C支出300元D获利300元2下列计算正确的是()A3a+4a=7aB4m+2n=6mnC5x+4x=2020D6xy32xy3=4xy33数轴上一动点A向左移动3个单位长度到达点B,再向右移动7个单位长度到达点C,若点C表示的数是2,则点A表示的数是()A1B2C1D24如果单项式6am+2b3与4.3bna4的和仍是单项式,则2mn的值为()A6B2C12D15已知a3,且|3a|=|5|,则a3的倒数是()ABC8D

2、86近似数3.27的准确值a的取值范围是()A3.265a3.275B3.265a3.275C3.265a3.274D3.265a3.2757下列多项式中,是四次三项式的是()Ax4+4x4y2x3Bx43x2+xCx4+5y3+xy2D8如图1,将一个长为a、宽为b的长方形(ab)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()ABabCD9下列说法正确的有()(3)的相反数是3近似数1.900105精确到百位代数式|x+2|3的最小值是0两个六次多项式的和一定是六次多项式A1个B2个C3个D4个10一个多项式A减去多项式2x2+5x3,某同学

3、将减号抄成了加号,运算结果为x2+3x5,那么正确的运算结果是()A3x22x4Bx2+3x7C5x27x+1D无法确定二、填空题:每小题3分,共30分11比较大小:|3.6|()12我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为137的绝对值的相反数的倒数为14多项式3(x2+2xy4y2)(2x22mxy2y2)中不含xy项,则m=15满足下列三个条件的单项式个数是只含有字母x、y、z;系数为2;次数为516若a23b3=2,则6b2a2+2020=17甲、乙两地相距a千米,小李计划3小时由甲地到乙地,如果想提前1小时到达,那么

4、每小时应多走千米18规定一种新运算:ab=aba+b+1,如34=343+4+1,请比较大小:(3)44(3)(填“”、“=”或“”)19如图是一个运算程序的示意图,若开始输入x的值为9,则第2020次输出的结果为2020知|x|=3,|x+y|=4,则x+|y|=三、解答题:共60分21计算:(1)9+()5(0.25);(2)45(+10.6);(3)(81)2+(16);(4)32(5)3+(10.2)(0.2)22若a、b互为倒数,b、c互为相反数,m的绝对值为,求代数式m2的值23先化简,再求值:5(3a2bab2)3(ab2+5a2b),其中a=,b=24某电动车厂计划一周生产电动

5、车12020,计划平均每天生产2020,但由于种种原因,实际每天生产量与计划生产量相比有出入下表是某周(6天)的生产情况(超产记为正,减产记为负): 星期一 二 三 四 五 六 增减+524+1310+16(1)根据记录的数据可知,该厂星期四生产电动车辆;(2)根据记录的数据可知该厂本周实际生产自行车辆;(3)该厂实行每日计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣2020那么该厂工人这一周的工资总额是多少元?25已知4|x+2|+(y5)2=0,A=3x22xy+y2,B=x2+xy5y2,求A3B的值26已知a、b、c在数轴上的位置如图所示:(

6、1)求+;(2)比较a+b,bc,a+c的大小,并用“”将它们连接起来27某商场销售一种西装和领带,西装每套定价1000元,领带每条定价2020“国庆节”期间决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款现某客户到该商场购买西装2020领带x条(x2020(1)若该客户按方案一购买,需付款元;(用含x的式子表示) 若该客户按方案二购买,需付款元;(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案2020学年黑龙江省牡丹江

7、市七年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1如果收入1000元记作+1000元,那么“300元”表示()A收入300元B支出300元C支出300元D获利300元【考点】正数和负数【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:由题意得:300元表示支出300元故选B2下列计算正确的是()A3a+4a=7aB4m+2n=6mnC5x+4x=2020D6xy32xy3=4xy3【考点】合并同类项【分析】根据合并同类项即可求出答案【解答】解:(A)原式=a,故A错误;(B)4m+2n已化到最简,故B错误;(C)5x+4x=9x,故

8、 C错误;故选(D)3数轴上一动点A向左移动3个单位长度到达点B,再向右移动7个单位长度到达点C,若点C表示的数是2,则点A表示的数是()A1B2C1D2【考点】数轴【分析】根据题意可以先设出动点A的初始位置,从而可以求的点A表示的数【解答】解:设动点A开始移动时所在的位置对应的数为x,则x3+7=2,解得,x=2,故选D4如果单项式6am+2b3与4.3bna4的和仍是单项式,则2mn的值为()A6B2C12D1【考点】合并同类项【分析】由题意可知6am+2b3与4.3bna4是同类项,然后分别求出m与n的值,最后代入求值即可【解答】解:由题意可知:m+2=4,3=n,m=2,n=3,原式=

9、223=12,故选(C)5已知a3,且|3a|=|5|,则a3的倒数是()ABC8D8【考点】倒数;绝对值【分析】由a3,且|3a|=|5|,先解出a的值,再逐步求解【解答】解:由a3,且|3a|=|5|,故方程可化为:3a=5,解得:a=2,a3=(2)3=8,8的倒数为故选:B6近似数3.27的准确值a的取值范围是()A3.265a3.275B3.265a3.275C3.265a3.274D3.265a3.275【考点】近似数和有效数字【分析】根据近似数的精确度求解【解答】解:近似数3.27的准确值a的取值范围是3.265a3.275故选A7下列多项式中,是四次三项式的是()Ax4+4x4

10、y2x3Bx43x2+xCx4+5y3+xy2D【考点】多项式【分析】根据多项式的概念即可求出答案【解答】解:(A)是五次三项式,故A错误;(C)是四次四项式,故C错误;(D)是四次二项式,故D错误;故选(B)8如图1,将一个长为a、宽为b的长方形(ab)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()ABabCD【考点】完全平方公式的几何背景【分析】设去掉的小正方形的边长是x,根据已知得到x+b=ax,求出x即可【解答】解:设去掉的小正方形的边长是x,把一个长为m、宽为n的长方形(ab)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个

11、大正方形,x+b=ax,x=故选A9下列说法正确的有()(3)的相反数是3近似数1.900105精确到百位代数式|x+2|3的最小值是0两个六次多项式的和一定是六次多项式A1个B2个C3个D4个【考点】整式的加减;非负数的性质:绝对值;近似数和有效数字【分析】根据相反数的定义,近似数以及绝对值非负数的性质,多项式的定义对各小题分析判断即可得解【解答】解:(3)的相反数是3,正确;近似数1.900105精确到百位,正确;代数式|x+2|3的最小值是3,故本小题错误;两个六次多项式的和一定是六次多项式,错误;综上所述,说法正确的有共2个故选B10一个多项式A减去多项式2x2+5x3,某同学将减号抄

12、成了加号,运算结果为x2+3x5,那么正确的运算结果是()A3x22x4Bx2+3x7C5x27x+1D无法确定【考点】整式的加减【分析】由题意知A=x2+3x5(2x2+5x3)=3x22x2,再计算3x22x2(2x2+5x3)可得答案【解答】解:根据题意知A=x2+3x5(2x2+5x3)=x2+3x52x25x+3=3x22x2,则3x22x2(2x2+5x3)=3x22x22x25x+3=5x27x+1,故选:C二、填空题:每小题3分,共30分11比较大小:|3.6|()【考点】有理数大小比较;绝对值【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数

13、,绝对值大的其值反而小,据此判断即可【解答】解:|3.6|=3.6,()=,|3.6|()故答案为:12我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为1.08105【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:10.8万=1.08105故答案为:1.08105137的绝对值的相反数的倒数为【考点】倒数;相反数;绝对值【分析】根

14、据绝对值、相反数以及倒数的定义即可求解【解答】解:7的绝对值是7,7的相反数是7,7的倒数是故答案是:14多项式3(x2+2xy4y2)(2x22mxy2y2)中不含xy项,则m=3【考点】整式的加减【分析】先将多项式合并同类项,再令xy项的系数为0即可求解【解答】解:3(x2+2xy4y2)(2x22mxy2y2)=3x2+6xy12y22x2+2mxy+2y2=x2+(6+2m )xy10y2,又多项式3(x2+2xy4y2)(2x22mxy2y2)中不含xy项,6+2m=0,解得m=3故答案为315满足下列三个条件的单项式个数是2xyz3只含有字母x、y、z;系数为2;次数为5【考点】单

15、项式【分析】依据单项式的定义,以及题目要求回答即可【解答】解:满足条件的单项式为:2xyz3故答案为:2xyz3(答案不唯一)16若a23b3=2,则6b2a2+2020=2020【考点】代数式求值【分析】将a23b3=2代入即可求出答案【解答】解:a23b3=2,a23b=5,原式=2(a23b)+2020=10+2020=2020, 故答案为:202017甲、乙两地相距a千米,小李计划3小时由甲地到乙地,如果想提前1小时到达,那么每小时应多走千米【考点】列代数式【分析】根据题意可以分别求出原来和后来的速度,从而可以解答本题【解答】解:由题意可得,每小时应多走: =千米,故答案为:18规定一

16、种新运算:ab=aba+b+1,如34=343+4+1,请比较大小:(3)44(3)(填“”、“=”或“”)【考点】有理数大小比较;有理数的混合运算【分析】根据新运算求出(3)4和4(3)的值,再比较即可【解答】解:(3)4=(3)4(3)+4+1=4,4(3)=4(3)4+(3)+1=18,(3)44(3),故答案为:19如图是一个运算程序的示意图,若开始输入x的值为9,则第2020次输出的结果为1【考点】代数式求值【分析】把x=9代入运算程序中计算确定出结果即可【解答】解:把x=9代入得:9=3;把x=3代入得:3=1;把x=1代入得:1+2=3;把x=3代入得:3=1,依此类推,以3,1

17、循环,则第2020次输出的结果为1,故答案为:12020知|x|=3,|x+y|=4,则x+|y|=2或4【考点】绝对值【分析】根据绝对值得出x=3,y=1,再代入x+|y|进而解答即可【解答】解:|x|=3,|x+y|=4,x=3,y=1,x+|y|=3+1=2或x+|y|=3+1=4故答案为:2或4三、解答题:共60分21计算:(1)9+()5(0.25);(2)45(+10.6);(3)(81)2+(16);(4)32(5)3+(10.2)(0.2)【考点】有理数的混合运算【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算除法

18、运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果【解答】解:(1)原式=950.25+0.25=4;(2)原式=560+27=65+27=38;(3)原式=81=36;(4)原式=9(125)=9+125+=12022若a、b互为倒数,b、c互为相反数,m的绝对值为,求代数式m2的值【考点】代数式求值【分析】利用倒数,相反数以及绝对值的代数意义求出ab,c+d,m的值,代入原式计算即可得到结果【解答】解:根据题意得:ab=1,c+d=0,m=或,当m=时,原式=1;当m=时,原式=2综上所述,代数式m2的值为1或23先化简,再求值:5(3a

19、2bab2)3(ab2+5a2b),其中a=,b=【考点】整式的加减化简求值【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变【解答】解:原式=15a2b5ab23ab215a2b=8ab2,当a=,b=时,原式=8=24某电动车厂计划一周生产电动车12020,计划平均每天生产2020,但由于种种原因,实际每天生产量与计划生产量相比有出入下表是某周(6天)的生产情况(超产记为正,减产记为负): 星期一 二 三 四 五 六 增减+524+1310+16(1)根据记录的数

20、据可知,该厂星期四生产电动车213辆;(2)根据记录的数据可知该厂本周实际生产自行车1218辆;(3)该厂实行每日计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣2020那么该厂工人这一周的工资总额是多少元?【考点】正数和负数【分析】(1)根据有理数的加法运算,可得答案;(2)根据最大数减最小数,可得答案;(3)根据产量乘以单价,可得工资,根据超产数量乘以超产的奖励单价,可得奖金,根据有理数的加法,可得答案【解答】解:(1)星期四的产量是202013=213(辆),故答案是:213;(2)这一周超过计划的辆数是524+1310+16=18(辆),实际生

21、产的辆数是:6202018=1218(辆),故答案是:1218;(3)工资总额是:1202050+1815=60270(元),答:该厂工人这一周的工资总额是60270元25已知4|x+2|+(y5)2=0,A=3x22xy+y2,B=x2+xy5y2,求A3B的值【考点】整式的加减化简求值;非负数的性质:绝对值;非负数的性质:偶次方【分析】先求出x与y的值,然后化简A3B,最后代入求值即可【解答】解:由题意可知:x=2,y=5,A3B=(3x22xy+y2)3(x2+xy5y2)=3x22xy+y23x23xy+15y2,=5xy+16y2=5(2)5+1625=50+400=45026已知a、b、c在数轴上的位置如图所示:(1)求+;(2)比较a+b,bc,a+c的大小,并用“”将它们连接起来【考点】有理数大小比较;数轴;绝对值【分析】(1)根据绝对值的性质,可化简绝对值,根据分式的性质,可化简分式,根据分式的加减,可得答案;(2)根据有理数的加减法,可确定和的大小,根据有理数的大小比较,可得答案【解答】解:(1)由数轴,得ac0b,且|a|c|b|,+=+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论