医学统计学样题及答案_第1页
医学统计学样题及答案_第2页
医学统计学样题及答案_第3页
医学统计学样题及答案_第4页
医学统计学样题及答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.1、 某市1974年为了解该地居民发汞的基础水平,调查了留住该第一年以上,无明显肝、肾疾病,无汞作业接触史的居民238人的发汞含量如下:发汞值 1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5 17.5 19.521.5(mmol/kg):人数 20 66 60 48 18 16 6 1 0 3(1)说明此频数分布的特征。(2)选用何种指标描述其集中趋势和离散趋势?(3)估计该地居民发汞值的95%参考值范围?答:(1)偏态分布(2)选用中位数描述集中趋势,四分位间距描述离散趋势(3)频数相对频数累积频数累积相对频数1.5 200.08403361200.0840343.5

2、660.27731092860.3613455.5 600.252100841460.6134457.5 480.201680671940.8151269.5 180.075630252120.89075611.5 160.067226892280.95798313.5 60.025210082340.98319315.5 10.004201682350.98739517.5 002350.98739519.521.530.012605042381合计238P2.5=1.5+(2382.5%-0)2/20=2.095P97.5=13.5+(23897.5%228)2/6=14.85所以估计该地

3、居民发汞值的95%参考值范围(2.095,14.85)2、某市场出售一批番茄汁罐头,罐头内vc平均含量(mg/100g)是未知的。今从中抽取16个罐头,经测定含量如下:16,22,21,23,21,19,15,13,23,17,20,29,18,22,16,25计算:(1)试问这批罐头内vc平均含量及95%区间估计?(2)假如另一批罐头vc平均含量为22mg/100g,试问这两批罐头vc含量是否相同?答:(1)样本平均值20 样本标准差4.115 16开方4 202.1314.115/4=17.8 202.1314.115/4=22.192 (17.8, 22.192)(2) 22(17.8,

4、 22.192) 所以含量相同3、 某药厂为了解其生产的某药物(同一批)之有效成分含量是否符合国家规定的标准,随机抽取了该药10片,得其样本均数为103.0mg,标准差2.22mg,试估计该批药物有效成分的平均含量?答: 该批药物有效成分的平均含量的95%可信区间为: (样本均值-1.96标准误,样本均值+1.96标准误) 即:(101.6,104.4)4、为了观察寒冷对动物鸟中17-KS排出量的影响,实验安排了营养正常组的大白鼠在寒冷前与寒冷后分别测定尿中17-KS排出量,请问这个实验设计的模型是什麽?答: 这个实验设计的模型是配对设计资料的t检验5、男性四组人群营养实验中胡罗卜素春、夏、秋

5、、冬四季之比较 春 夏 秋 冬X 13373.10 13313.00 11739.20 7063.00N 137 179 135 123 97.61 74.37 86.96 57.42X2 1454669.21 1133189.22 1174964.10 481172.32(1)试检验四季之间胡萝卜素存留量(毫克)有无显著差别?(2)如有显著差别,应如何确定?(一)1. 假设和和确定检验水准H0 :四季之间胡萝卜素存留量的总体均数相等,m1=m2=m3=m4H1 :四季之间胡萝卜素存留量总体均数不全相等 a=0.05检验统计量F值SX13373.10+13313.10+11739.20+706

6、3.0045488.30N137+179+135+123574SX24243994.85C=(SX)2/N=(45488.30)2/574=3604852.68 4243994.853604852.68639142.17 总 = N-1 = 574-1=573 (13373.10)2/137 (13313.00)2/179 (11739.20)2/135(7063.00)2/123 3604852.68117075.46 组间 = k-1 =4-1 =3SS 组内=S总- SS 组间 =639142.17-117075.46=522066.71组内= N-k =574-4=570MS 组间 =

7、 SS 组间/组间 =117075.46/3=39025.15MS 组内 = SS 组内/组内=522066.71/570=915.91F= MS 组间/MS 组内=39025.15/915.91=42.61方差分析结果表变异来源SSMSFP总639142.17573组间117075.46339025.1542.610.01组内522066.71570915.91 3.确定P值和作出推断结论 以1(组间)=3及2(组内)=570,查F界值表得P0.01, 按a=0.05水准拒绝H0 ,接受H1,故可以认为四季之间胡萝卜素存留量(毫克)差别有统计学意义。(二)进行平均值之间的多重比较,未讲 略6

8、、 五只高血压狗口服萝芙木总碱(2-8mg/kg体重),其收缩压的变化如下: 狗号 给药前给药期停药后1 162 130 170 2230170212315912914041991451685162118174试分析不同用药时间,动物间服药后收缩压的变化。答:做随机区组方差分析:狗号 给药前给药期停药后njiYij1162130170346222301702123612315912914034284199145168351251621181743454ni55515jYij9176928642468Yi平均182.4138.4172.8164.53jY2ij170270973901519444

9、19604提出假设检验:H0:i=0; H1:i0,至少有一个不等式成立。H0:j=0; H1:j0,至少有一个不等式成立。=0.05。SS总13535.73;v总14SS处理5352.53;v处理2SS区组7075.73;v区间4SS误差1107.47;v误差8由此,列方差分析表得方差分析表变异来源SSMSFP处理5352.5322676.26519.332460470.01区组7075.7341768.932512.778188120.05B测量时间883.1301883.13029.903(4.75)0.05A*B交互212.79521212.7957.205(4.75)0.05误差35

10、4.3931229.533总计1453.49515统计学结论:(1) 接受H0:i=0的无效假设;拒绝 H1:i0,至少有一个不等式成立。(2) 拒绝H0:j=0的无效假设; 接受H1:j0,至少有一个不等式成立。(3) 拒绝H0:()ij=0的无效假设; 接受H1:()ij0,至少对一种(ij)组合成立。尚不能认为使用雌激素对该激素水平具有影响;下午该激素水平高于上午;雌激素的使用与测量时间之间存在交互作用。2 t检验(给予雌激素是否使该种激素上下午波动幅度减小)对照组给予雌激素上午下午d上午下午d18.5339.1430.61117.5332.0014.47220.5326.205.672

11、21.0723.802.73314.0031.3317.33320.8028.878.07410.8045.8035.00420.0725.064.99n1=4, d1=22.1525, Sd12=177.17n2=4, d2=7.5650, Sd22=25.98方差齐性检验:F=Sd12/Sd22=6.82, 1=4-1=3, 2=4-1=3。F0.05, 方差齐。H0:d1=d2; H1:d1d2。=0.05。Sc2=(4-1) 177.17+(4-1)25.98/(4+4-2)= 101.575t=(22.1525-7.5650)/ 101.575(1/4+1/4)0.5=2.047=4

12、+4-2=6t1.943=t0.05(6)拒绝H0:d1=d2的无效假设; 接受H1:d1d2。给予雌激素可以使该种激素上下午波动幅度减小说明:若分析雌激素是否对该种激素上下午波动幅度有影响,H1:d1d2,则应为双侧检验,td2,尚不能认为雌激素对该种激素上下午波动幅度有影响。8、标准差和标准误有何区别和联系? 标准差是反映数据变异程度的指标,其大小受每一个观察值的影响,变异程度大,标准差也大.常用于描述对称分布,尤其是正态分布资料的离散程度。可以反映样本均数的代表性. 标准误是样本均数的标准差,反映了样本均数与总体均数之间的离散程度,即样本均数变异程度的指标,常用来表示抽样误差的大小。标准

13、误大反映样本均数抽样误差大,其对总体均数的代表性差。标准误小,样本均数抽样误差就小,其对总体均数的代表性就好。标准差随着样本量的增多,逐渐趋于稳定,如同地区、同年龄、同性别儿童的身高、体重的标准差,当样本含量达到约200以上时,基本趋于稳定。 标准误随着样本量的增多而减小,如均数的标准误,当标准差不变时,与样本量的平方根呈反比。9、可信区间和参考值范围有何不同?可信区间是从总体中作随机抽样,每个样本可以算出一个可信区间,如95%可信区间,意味着100次抽样, 95个可信区间包括总体均数(估计正确),只有5个可信区间不包括总体均数(估计错误)。 参考值范围是指同质总体中大多数个体变量值的分布范围

14、。95%参考值范围指同质总体中95%的个体值分布在此范围内。它与标准差有关,各个体值变异越大,该范围越宽,分布也越分散。 10、假设检验和区间估计的异同之处有哪些?同:两者都是对总体特征进行推断的方法。区间估计用以说明参数量的大小,如推断总体均数所在的范围,而假设经验用于推论质的差别,如推断总体均数是否不同。异:可信区间不仅可回答假设检验的问题,而且可以比假设检验提供更多的信息,可信区间在解决假设检验问题基础上,还可获得是否有专业意义的信息。11、假设检验时,一般当P0.05则拒绝H0,理论依据是什么?假设检验时,先提出无效假设H0,然后在假设成立的前提下看实际抽到的样本是否属小概率事件(如果

15、当一个事件发生的概率很小时,那么在一次试验时这个事件时“不会发生的”,一旦发生了,称其为小概率事件。统计学中,将P0.05称为小概率事件。)。若属小概率事件,则拒绝该假设;若不属于小概率事件,则不拒绝该假设。得出的结论是概率性的,不是绝对的肯定或者否定。犯一类错误(拒绝了正确的无效假设)的概率是0.05。12第一类错误和第二类错误有何区别和联系? 两类错误的区别: 错误类型第一类错误第二类错误意义拒绝了正确的无效假设H0 即无效假设原本是正确的,但由于偶然因素的影响,随机抽样时,得到一个较大的检验统计量t 值,故t值大于了 ta,n,只能拒绝无效假设,错误地得出有差别的结论。接受了错误的无效假

16、设H0即无效假设原本是不正确的,但所算得的统计量t 没有超过ta,n水平从而接受了无效假设,错误地得出了无差别的结论。假阳性错误假阴性错误相应概率a,即检验水准,一般取a = 0.05或0.01。应按所犯第一类错误的危害性,紧密结合分析问题的具体情况,事先选定a 的取值。,我们称(1-)为检验效能,值的大小一般未知,只有在不同总体特征已知的基础上,按预定的a和n才能做出估算。的取值,实际上也应根据第二类错误的危害性事先确定。通常检验效能应该达到0.8左右。两类错误的联系: 在样本量固定的情况下,减小a 会引起增大;减小会引起 a 增大。若要同时减小 a 和,只有增大样本含量。所以样本含量应尽可

17、能大一些,同时正确的实验设计与严格规定实验操作方法,能够减少抽样误差,提高检验效果。 13某地某年人口数58723人,脑卒中发病81人,脑卒中死亡45人,该地当年各种疾病死亡372人,试问上述数字能计算多少个有意义的相对数?并说明都是些什么相对数? 能算出五个有意义的相对数:强度相对数: 该地当年的脑卒中发病率:(81/58723)*1000 = 1.38 该地当年的脑卒中死亡率:(45/58723)*万分之万 = 万分之7.66 该地当年的脑卒中病死率:(45/81)*100% = 55.6% 该地当年的疾病总死亡率:(372/58723)*1000 = 6.33结构相对数: 该地当年内脑卒

18、中死亡人数占疾病总死亡人数的比例(构成比):(45/372)*100% = 12.1% 相对数有三类: 率 构成比 相对比1率(rate): 某现象实际发生数于可能发生某现象的总数之比,用以反映某现象发生的频率或强度,又称为频率指标,具有概率意义。 计算公式为: 依据习惯选定,或使得所计算得的率保留一到两位整数。常用的率包括发病率、患病率、死亡率、病死率等。(1)发病率:表示在观察期内,可能发生某种疾病的一定人群中新发生该病的频率。 某病发病率= K在通常情况下,发病率的分母泛指一般平均人口数。 意义:发病率是反映某病在人群中发生频率大小的指标,常用于衡量疾病的发生,研究疾病发生的因果关系和评

19、价预防措施的效果。 (2)患病率:表示在某时点检查时可能发生某病的一定人群中患有某病的频率。 其中某病病例数包括新病例和旧病例,凡患该病的一律统计在内。同一人不应同时成为同一疾病的两个病例。 意义: 这一指标最适用于病程较长的疾病的统计研究,用于衡量疾病的存在,反映某病在一定人群中的流行规模或水平,估计医疗设施的需求量。 (3)反映疾病防治效果的指标治愈率有效率某病病死率=2. 构成比 说明某事物内部各组成部分所占的比重或比例。常以百分数表示,计算公式为:3相对比,比较两个指标时用以反映两个有关指标间数量上的比值,如A指标是B指标的若干倍,或A指标是B指标的百分之几,通常用倍数或分数表示。 计

20、算公式为:相对比 相互比较的两个指标可以是相同性质的指标,也可以是性质不同的指标;两变量可以为数值变量、分类变量,可以是绝对数、相对数、平均数等。 不能以比代率因为构成比说明的是事物内部各部分所占的比重或分布,不能说明某现象发生的强度和频率大小。只有频率指标:率才能说明事物的严重程度。(如真正答题时,自己最好举一个例子来说明,书34页)20、下表为变性卵蛋白在38oC与25oC时之凝固百分数:时间(分钟) 3 6 9 12 15 1838oC 12 30 44 53 66 81.525oC 7.2 18.4 30 40 49 58试求出两个时间推算凝固百分数之回归方程式,并检验两个回归系数间差

21、别的显著性。(by milanlan,老师说不要求第二问)解:n=6,Xi=63,Xi=10.5,Xi2=819 Yi1=286.5,Yi1=47.75,Yi12=16787.25,XiYi1= 3705 Yi2=202.6,Yi2=33.77,Yi22=8655.4,XiYi2= 2661lxy1= XiYi1-(Xi)(Yi1)/n=3705-63286.5/6=696.75lxy2= XiYi2-(Xi)(Yi2)/n=2661-63202.6/6=533.7lxx=Xi2-(Xi)2/n=819-632/6=157.5lyy1=Yi12-(Yi1)2/n=16787.25-286.52

22、/6=3106.875lyy2=Yi22-(Yi2)2/n=8655.4-202.62/6=1814.273b1= lxy1/lxx=696.75/157.5=4.424, a1= Yi1-b1 Xi=47.75-4.42410.5=1.298即38oC时Y=1.298+4.424Xb2= lxy2/lxx=3.389, a2=33.77-3.38910.5=-1.8145即25oC时Y=-1.8145+3.389X21、.测定小鼠肾上腺中抗坏血酸含量时测半个腺和整个腺体所得数据如下: 半个 371 592 464 519 470 528 580 420 563 整个 381 627 485

23、546 500 546 595 569 595解释:这道题老师上课说了,用直线回归,因为如果以半个腺的抗坏血酸含量为自变量x,以整个腺的抗坏血酸含量为应变量Y,若能找到两者之间的线性关系则可以在以后的试验中由半个腺的测量值来预测该测量值对应的整个腺的Y值。计算:1 画散点图,看两者之间是否存在直线关系。表一半个(x)371592464519470528580420563整个(y)381627485546500546595569595对应拟和直线图表二,因为第八组数据离直线太远,故舍去。半个(x)371592464519470528580563整个(y)381627485546500546595

24、595对应拟和直线图2 求出方程(计算回归系数b和截距a)。注意因为从以上作图可知舍去了第八组数据,所以计算时也不予考虑。老师上课讲过异常值应该舍,但没有讲如何检验异常值。本人在北大时好像学过,但已经忘记,且觉得不必要,大家谁要是觉得必要,请看以前的统计书,如果有人会,请上传21题补丁,谢谢了!半个(x)整个(y)371381592627464485519546470500528546580595563595Xi4087Yi4275X平均510.875Y平均534.375Xi2 2125815Yi2 2327797Xi*Yi2224322因为公式比较繁,大家参照课本180页自己计算:Lxy40

25、331.375Lxx37868.875Lyy43343.875b40331.375/37868.8751.065a534.3751.065*510.8759.707回归方程为:y9.7071.065x(注意书上的写法,这里因为本人能力不能写出)。3 对总体的回归系数进行假设检验。使用方差分析:建立假设检验:H0:0,即半个腺和整个腺的抗坏血酸含量有关 H1:0, 无关计算统计量F值dfSSMSFP回归分析14295442954661.0495n)。(随机数表)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的

26、办法抽取。K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代

27、表该子总体,所有的样本进而代表总体。整群抽样:抽样的单位不是单个的个体,而是成群的个体。它是从总体中随机抽取一些小的群体,然后由所抽出的若干个小群体内的所有元素构成调查的样本。对小群体的抽取可采用简单随机抽样、系统抽样和分层抽样的方法。一般来说,类别相对较多、每一类中个体相对较少的做法效果较好。#分层抽样与整群抽样的区别:分层抽样要求各子群体之间的差异较大,而子群体内部差异较小;整群抽样要求各子群体之间的差异较小,而子群体内部的差异性很大。换句话说,分层抽样是用代表不同子群体的子样本来代表总体中的群体分布;整群抽样是用子群体代表总体,再通过子群体内部样本的分布来反映总体样本的分布。列表比较:类

28、别 共同点 各自特点 相互联系 优点缺点适用范围 简单随机抽样 抽样过程中各个个体被抽到的概率相等 从总体中逐个抽取,采取随机数表等方法方法简便工作量大,不能将变异分离总体容量较少 系统抽样 将总体均分成几部分,按预先定出的规则再部分抽取 每一部分进行抽样时,采用的是简单随机抽样 比简单随机抽样更简便易行不适用于总体内部存在某种与研究变量相关的规则分布,同上总体容量较多 分层抽样 将总体分成几部分,每一部分按比例抽取 每层抽样时采用简单随机抽样或系统抽样 对于异质性较强的总体可以将变异划分的很细(这个不知道啊,可能是分层具体方法较为复杂?)总体由差异明显的若干部分组成 整群抽样从总体中随机抽取

29、一些小的群体构成调查的样本对小群体的抽取可采用简单随机抽样、系统抽样和分层抽样的方法简便易行、节省费用,特别是在总体抽样框难以确定的情况下非常适合样本分布比较集中、代表性相对较差总体容量较多,总体的抽样框难以确定28、实验为什么要设对照组?如何设对照组?正确的设立对照,才能平衡非处理因素对实验结果的影响,从而把处理因素的效应充分显露出来,设立对照是控制各种混杂因素的基本措施。设立对照组的意义在于使实验组和对照组内的非处理因素的基本一致,即均衡可比。设立对照时应使对照组与实验组的非实验因素均衡一致,也就是在设立对照时除给予处理单因素不同外,其他对实验效应应有影响的因素(即非处理因素)尽量均衡一致

30、,才能显示“对照”的作用。即设立对照组应满足均衡性要求,做到:1、组间除干预措施外,其他影响结果的非处理因素等尽可能相同。 2、对所研究疾病的易感度及发病机会相等。 3、检测和观察方法及诊断标准必须一致。常用的实验对照有:空白对照 对照组不施加任何处理因素。实验对照 对照组不施加处理因素,但施加某种实验因素标准对照 不设立专门的对照组,而是用现有标准值或正常值做对照。自身对照 对照与实验在同一受试者身上进行,如用药前后作为对比。一般情况下还要求设立平行对照组。相互对照 这种对照不设立对照组,而是两个或几个试验组相互对照。配对对照 把研究对象条件相同的两个配成一对,分别给不同的处理因素,对比两者

31、之间的不同效应。配对对照常用于动物实验,临床试验也可采用,但严格地说,很难找到相同或十分相似的对子。29、有刊物报道, 某厂调查纺织女工子宫下垂者为132人, 其中115人为 站立工作者, 占87.12%; 坐着工作的有17人, 占12.88%。结论为“ 站立工作是子宫下垂的患病因素”。问此项资料是否支持该项结论?为什么?不支持。因为题目中给的数据为构成比。分析时常见的错误是以构成比代替率来说明问题。构成比说明事物内部各部分所占的比重或分布,不能说明某现象发生的强度或频率大小。30、要分析 的关系,不能用方差分析法。 A 母亲年龄与出生体重 B 籍贯与血红蛋白含量 C 性别与尿液比重 D 职业

32、与血型31、实验设计的基本原则是 。 A 收集、整理、分析 B 对照、重复、随机 C 设计、计算、重复 D 设计、随机、对照、 32、对两地某病发病情况进行调查资料对比分析时,可采用 。 A 两地某病的各自总发病率比较 B 两地某病的各年龄段发病率比较 C 两地某病的标化率比较 D 两地某病的发病率进行显著性检验。33、显著性检验中,P0.05 表示。 A 第一类错误的概率小于0.05 B 假阴性的概率小于0.05 C 第二类错误的概率小于0.05 D 以上都对34、9例肝硬化患者治疗后存活天数分别为:128,215,79,243,784,65,49, 162,215 反映本组资料的平均水平的

33、取值应为162。(中位数)35、变异系数适用于下列哪些场合:A 反映几组具有不同量纲的计量资料的变异度大小B 反映定量与定性资料的变异度大小C 反映几组算术均值相差悬殊的计量资料的变异度大小 D 反映几组有缺失值数据的计量资料的变异度大小36、 人在进行数据处理时,误用了配对资料的t检验分析本属于成组设计的计量资料。在通常情况下,这意味着:A 增大了犯I类错误的机会 B 增大了犯II类错误的机会C 增大了犯III类错误的机会 D 增大了犯IV类错误的机会37、 好的实验设计,能减少人力、物力,提高实验效率,还有助于消除和减少:A 系统误差 B 随机误差C 抽样误差 D 责任事故38、试验设计中

34、必须涉及的项目为要素,试验设计的要素有:A 试验要素 B 试验单位C 试验计划 D 试验效应39、已知A药对某病有效,现发现一种增效剂B,可提高A药的疗效,想通过临床试验了解A+B的疗效是否显著地优于单用A药的疗效,应选用:A t检验 B X2 检验C 双侧检验 D 单侧检验用均数和标准差可全面描述正态分布资料的特征。40、用最小二乘法确定直线回归方程的原则是各观察点距直线的纵向距离的平方和最小。41、研究某药物治疗糖尿病的疗效临床观察了200名糖尿病人的血糖情况,其研究总体是糖尿病病人的血糖值。42、某年某单位报告了果胶除铅的疗效观察,30名铅中毒工人住院治疗,治疗前测得尿铅的均数为0.11

35、6mg/l , 血铅的均数为0.181mg/dl ;用果胶20天后再测尿铅均数降为0.087mg/l , 血铅均数降为0.073mg/dl,说明果胶有较好的作用, 你如何评价?这道题主要的问题是没有设计对照。应该同时随机抽取若干个铅中毒的住院病人,与服用果胶的试验组构成对照,分别测量不服用果胶20天前后的血铅、尿铅的变化量;再用完全随机设计两总体的t检验进行显著性分析。43、例已确诊为肠憩室的患者,被随机分为两组,分别给予甲乙两种饮食,观察食物排除时间(小时),试问两种食物对肠蠕动效果有无差别?问可用那一种检验方法:甲组 76 75 44 55 51 66 69 68 52 60 71 62 70 75乙组 97 74 79 83 95 101 98 95 52 64 68 88 83n1=14, 平方和58418,和894,样本标准差10.11n2=13, 平方和91927,和1077,样本标准差15F=(标准差1/标准差2)2=2.2t25,0.01单侧=2.485所以,有极显著差异。44、实验设计的基本原则是什么?说明其重要性,并按实验设计原则评述下面问题:研究者为研究ADI药物预防肠道传染病的效果,设计如下试验:在甲幼儿园随机抽取大、中、小班儿童各50名组成试验组,服用ADI 药物(剂量按年龄、体重严

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论