




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考题中的利用导数求参数范围一 与二次函数的性质、单调性、不等式等相联系求解策略:利用“要使成立,只需使函数的最小值恒成立即可;要使成立,只需使函数的最大值恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量=(,),=(,),若在区间(-1,1)上是增函数,求的取值范围. 解析:由向量的数量积定义,=()+()=+=+.若在区间(-1,1)上是增函数,则有0-在 (-1,1)上恒成立.若令=-=-3()-在区间-1,1上,=5,故在区间(-1,1)上使恒成立,只需即可,即5.即的取值范围是5,).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注
2、意边界值的取舍。例2使不等式-对任意的实数都成立,求实数的取值范围.解析:注意到不等式的次数较高,应想到构造函数,求导.令=-,则如果原不等式对任意的实数都成立等价于.又=-=4(),令=0,解得,=0或=1. 的符号及的单调性如下:(-,0)0(0,1)1(1,+)-0-0+无极值极小值因为在R上的极值只有一个,故此极小值即为最小值,即= -1,= -1,即3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。例3(05天津理)若函数=(0,1)在区间(-,0)内单调递增,则的取值范围是( )A,1) B.1) C(,+) D(1, ) 解析:是复合函数,须按01两种情况考虑. 令=,
3、在(-,0)上为增函数, 若01,则在(-,0)上为减函数,即=3在(-,0)上恒成立, 3=,此时,1; 若1,则在(-,0)上为增函数,须使=0在(-,0)上恒成立,即3在(-,0)上恒成立, 即0,不合题意.综上,.1).点评:解决与复合函数有关问题,要注意复合函数的单调性,否则就会南辕北辙.例4(04辽宁)已知函数.(1)求函数的反函数的导数(2)假设对任意,不等式成立,求实数m的取值范围. 解析:(1) 解略. =,=;得=;(2) 解此绝对值不等式得+-把(1)代入上式,得-+-若把此不等式左右两边设为两个新函数,即令=-+,=+-则原不等式对于任意恒成立,意即成立,只需满足即可.
4、=,=,注意到0,即10 , 0 , 故、均为增函数,在上,=,=,故原不等式成立,当且仅当,即0恒成立,求实数m的取值范围.分析:(1)基础训练:六知函数图象的交点情况,求参数的取值范围例5.已知函数处取得极值(1) 求函数的解析式.(2) 若过点可作曲线y=的三条切线,求实数m的取值范围.略解(1)求得(2)设切点为总结:从函数的极值符号及单调性来保证函数图象与x轴交点个数.基础训练:七. 开放型的问题,求参数的取值范围。例已知且。(1)设,求的解析式。(2)设,试问:是否存在,使在()上是单调递减函数,且在()上是单调递增函数;若存在,求出的值;若不存在,说明理由。分析:(1)易求c=1,(2),由题意在()上是单调递减函数,且在()上是单调递增函数知,是极小值,由得当,时,是单调递增函数;时,是单调递减函数。所以存在,使原命题成立。在文科数学中,涉及到高次函数问题一般可用导数知识解决,只要把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025债务转让合同协议范本
- 2025企业内部餐厅升级改造工程合同 施工合同协议书
- 2025二手设备转让合同的样本
- 2025租赁合同印花税计算方法探析
- 2025年食品安全试题
- 【清华大学】2024中国煤炭城市公正转型调研报告基于两个案例的研究报告
- 人教版八年级物理质量与密度基础知识点归纳总结模版
- 教师参加心理健康培训心得体会模版
- 广西项目可行性研究报告
- 专题八房地产金融融资方式与工具创新
- 《滑翔伞模拟器控制系统的设计与研究》
- 公务员考试题库及答案4000题
- 专题04 物质结构与性质-2024年高考真题和模拟题化学分类汇编(解析版)
- 林权投资合作协议范本
- 中医康复治疗技术习题+参考答案
- 新疆大学答辩模板课件模板
- 中小学-珍爱生命 远离毒品-课件
- 2024年四川省广元市中考物理试题(含解析)
- 特种设备使用管理规则(TSG08-2017)
- 2023年山东烟台中考满分作文《这一路风光真好》6
- 人教版九年级上册英语单词表
评论
0/150
提交评论