圆心角、弧、弦、弦心距之间的关系_第1页
圆心角、弧、弦、弦心距之间的关系_第2页
圆心角、弧、弦、弦心距之间的关系_第3页
圆心角、弧、弦、弦心距之间的关系_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆心 弧 弦 弦心距之间的关系知识要点归纳 1. 圆不但是轴对称图形,而且也是中心对称图形,实际上圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 2. 圆心角:顶点在圆心的角叫做圆心角。从圆心到弦的距离叫做弦心距。 3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 4. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 注意:要正确理解和使用圆心角定理及推论。【典型例题】 例1. 已知:如图,在O中,弦AB、CD的延长线交于P点,PO平分APC。 求证:(1)ABCD;(2)P

2、APC 例2. 如图,在O中,AB2CD,那么( ) 例3. 求证:OEOF 例4. 如图,O中AB是直径,COAB,D是CD的中点,DEAB。 【模拟试题】一. 选择题。 1. 在O与O中,若中,则有( ) A. B. C. D. 的大小无法比较 2. 半径为4cm,120的圆心角所对的弦长为( ) A. B. C. D. 3. 在同圆或等圆中,如果圆心角BOA等于另一个圆心角COD的2倍,则下列式子中能成立的是( ) A. B. C. D. 4. 在O中,圆心角AOB90,点O到弦AB的距离为4,则O的直径的长为( ) A. B. C. 24D. 16 5. 在O中,两弦ABCD,OM、O

3、N分别为这两条弦的弦心距,则OM、ON的关系是( ) A. B. C. D. 无法确定 6. 如图,AB为O的直径,C、D是O上的两点,则DAC的度数是( ) A. 70B. 45C. 35D. 30二. 填空题。 1. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为_。 2. 一条弦等于其圆的半径,则弦所对的优弧的度数为_。 3. 在半径为R的圆中,垂直平分半径的弦长等于_。 4. 在O中,弦CD与直径AB相交于E,且AEC30,AE1cm,BE5cm,那么弦CD的弦心距OF_cm,弦CD的长为_cm。 5. 已知O的半径为5cm,过O内一已知点P的最短的弦长为8cm,则OP_。 6. 已知A、B、C为O上三点,若度数之比为1:2:3,则AOB_,BOC_,COA_。 7. 已知O中,直径为10cm,是O的,则弦AB_,AB的弦心距_。三. 解答题。 1. 如图:已知,OA为O的半径,AC是弦,OBOA并交AC延长线于B点,OA6,OB8,求AC的长。 2. 如图,中,O在的三边上所截得的弦长都相等,求BOC的度数。 3. 已知:如图,在O中,弦ABCD,且ABCD于E,BE7,AE3,OGAB于G,求:OG的长? 4. 已知:如图,求OFE的度数。 5. 如图,C是O的直径AB上一点,过点C作弦DE,使CDCO,使的度数为40,求的度数。 6. 如图:已知,O中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论