




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 数字图像处理课程设计报告 课程名称 数字图像处理与Matlab 专 业 班 级 学 号 姓 名 指导教师 2015年11月6日 实验一 数字图像的基本操作和灰度变换一、 实验目的 1. 了解数字图像的基本数据结构 2. 熟悉Matlab中数字图像处理的基本函数和基本使用方法 3. 掌握图像灰度变换的基本理论和实现方法 4. 掌握直方图均衡化增强的基本理论和实现方法二、 实验原理与方法1. 图像灰度的线性变换灰度的线性变换可以突出图像中的重要信息。通常情况下,处理前后的图像灰度级是相同的,即处理前后的图像灰度级都为0,255。那么,从原理上讲,我们就只能通过抑制非重要信息的对比度来腾出空间给重
2、要信息进行对比度展宽。 0255 255图1.1 对比度线性变换关系设原图像的灰度为,处理后的图像的灰度为,对比度线性展宽的原理示意图如图1.1所示。假设原图像中我们关心的景物的灰度分布在,区间内,处理后的图像中,我们关心的景物的灰度分布在,区间内。在这里,也就是说我们所关心的景物的灰度级得到了展宽。根据图中所示的映射关系中分段直线的斜率我们可以得出线性对比度展宽的计算公式:, , (1-1) ,(;)其中,图像的大小为。2. 直方图均衡化 直方图均衡化是将原始图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 离散图像均衡化处理可通过变换函数:来实现三、实验内容与步骤1熟悉MAT
3、LAB语言中数字图像处理函数的使用。2. 图像灰度线性变换的实现 1)读入一幅灰度图像test1.tif,显示其灰度直方图 2)根据图像灰度直方图,选择所关心的图像景物的灰度分布范围fa,fb,以及拟变换的灰度分布范围ga,gb 3)实现对图像的灰度线性变换 4)调整,的值,观察对处理结果的影响。3. 图像的均衡化处理 1)读入一幅灰度图像test2.tif,求出其直方图 2)利用Matlab函数实现图像的均衡化处理 3)同屏显示处理前后的图像和灰度直方图,说明处理前后直方图的变化以及对应的灰度变化四、程序代码1、图像灰度线性变换的实现I=imread(D:Matlabworkimagines
4、test1.jpg); figure(1);subplot(1,3,1);imshow(I);title(原始图像);subplot(1,3,2);imhist(I);title(灰度直方图);I=double(I);M,N=size(I);for i=1:M for j=1:N if I(i,j)=30 I(i,j)=I(i,j); elseif I(i,j)=150 I(i,j)=(200-30)/(150-30)*(I(i,j)-30)+30; else I(i,j)=(255-200)/(255-150)*(I(i,j)-150)+200; end end endsubplot(1,3
5、,3);imshow(uint8(I);title(灰度线性变化图像);2、图像的均衡化处理I=imread(D:Matlabworkimaginestest2.jpg);figure(1);subplot(2,2,1);imshow(I);title(原始图像);subplot(2,2,2);imhist(I);title(灰度直方图);I1=histeq(I);subplot(2,2,3);imshow(I1);title(图像均衡化处理);subplot(2,2,4);imhist(I1);title(灰度直方图);五、实验结果1、图像灰度线性变换的实现分析:从灰度直方图可以知道,主要分
6、布于较暗区域,导致图像亮度偏暗。采用灰度线性变化后,与原图对比可以提高了亮度,使边缘突出。2、图像的均衡化处理分析:采用了均衡化处理后,使灰度级均衡分布于0,255,明显把亮度拉伸了。六、思考问题1在映射关系中,分段直线的斜率的大小对图像处理结果有哪些影响? 答:为了突出感兴趣的目标或灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。设原图像f(x,y)在0,Mf, 感兴趣目标的灰度范围在a,b,欲使其灰度范围拉伸到c,d,则对应的分段线性变换表达式为通过调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。2. 直方图均衡化适用于什么形式的灰度分布情形? 答:原
7、图较暗且动态范围小,在直方图中的表现是直方图灰度范围窄且集中在低灰度值区域。 实验二 图像的空间域增强一、 实验目的 1. 熟悉图像空间域增强方法,掌握增强模板使用方法2. 掌握均值滤波器、中值滤波器的理论基础和实现方法3. 掌握图像锐化的基本理论和实现方法4. 验证图像滤波处理结果二、 实验原理与方法图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”信息,削弱或去除不需要的信息,以改善图像的视觉效果,或突出图像的特征,便于计算机处理。图像增强可以在空间域进行,也可以在频率域中进行。空间域滤波主要利用空间模板进行,如33,55模板等。一般来说,使用大小为mn 的
8、滤波器对大小为MN 的图像f进行空间滤波,可表示成: 其中,m=2a+1, n=2b+1, (,)是滤波器系数,(,)是图像值均值滤波器是一种空间平滑滤波器,它是对包含噪声的图像上的每个像素点,用它邻域内像素的平均值替代原来的像素值。例如,采用一个33的模板,待处理的像素为f(i,j),则处理后图像对应的像素值为g(i-1,j+1)g(i,j)=1/9*(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j)+f(i,j+1)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1); 中值滤波器也是一种空间平滑滤波器,它是对以图像像素点为中心的一个滑
9、动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。采用Laplacian锐化算子进行图像边缘的锐化,是采用二阶差分运算获得像素间的差异值,由此,获得对图像景物边界的锐化。Laplacian也可以算子也可以写成是模板作用的方式,如下:设待处理的像素为f(i,j),则处理后图像对应的像素值为g(i-1,j+1),则g(i,j)=4*f(i,j) -(f(i-1,j-1)+f(i,j-1)+f(i,j+1)+f(i+1,j); 常用的锐化算子还有Roberts、Prewitt和Sobel算子等三、实验内容与步骤1读入一幅256256 大小、256 级灰度
10、的数字图像test32. 图像的平滑滤波处理1)对原图像分别加入高斯噪声、椒盐噪声。2)利用邻域平均法,分别采用33,55模板对加噪声图像进行平滑处理,显示原图像、加噪图像和处理后的图像。3)利用中值滤波法,分别采用33,55模板对加噪声图像进行去噪处理,显示原图像、加噪图像和处理后的图像。4)比较各种滤波方法和滤波模板的处理结果3. 图像的锐化处理 1)利用Laplacian 锐化算子(=-1)对256256 大小、256 级灰度的数字图像test4进行锐化处理,显示处理前、后图像。 2) 分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像test4进行边缘检测,
11、显示处理前、后图像。四、实验代码1、图像的平滑滤波处理I=imread(D:Matlabworkimaginestest3.gif);J=imnoise(I,salt & pepper,0.02);K=imnoise(I,gaussian,0,0.01);h1=fspecial(average,3);h2=fspecial(average,5);K2=imfilter(K,h1);K3=imfilter(K,h2);J2=imfilter(J,h1);J3=imfilter(J,h2);K4=medfilt2(K,3 3);K5=medfilt2(K,5 5);J4=medfilt2(J,3
12、3);J5=medfilt2(J,5 5); figure(1);subplot(3,2,1);imshow(I);title(原始图像);subplot(3,2,2);imshow(K);title(高斯噪声);subplot(3,2,3);imshow(K2);title(3*3领域平均法);subplot(3,2,4);imshow(K3);title(5*5领域平均法);subplot(3,2,5);imshow(K4);title(3*3中值滤波);subplot(3,2,6);imshow(K5);title(5*5中值滤波); figure(2);subplot(3,2,1);i
13、mshow(I);title(原始图像);subplot(3,2,2);imshow(J);title(椒盐噪声);subplot(3,2,3);imshow(J2);title(3*3领域平均法);subplot(3,2,4);imshow(J3);title(5*5领域平均法);subplot(3,2,5);imshow(J4);title(3*3中值滤波);subplot(3,2,6);imshow(J5);title(5*5中值滤波); 2、图像的锐化处理L=imread(D:Matlabworkimaginestest4.gif);h3=fspecial(laplacian,0.2)
14、;L2=imfilter(L,h3);L3=edge(L,sobel); %sobelL4=edge(L,prewitt);%prewittL5=edge(L,roberts);%robertsfigure(3);subplot(3,2,1,2);imshow(L);title(原始图像);subplot(3,2,3);imshow(L2);title(拉普拉斯);subplot(3,2,4);imshow(L3);title(Sobel);subplot(3,2,5);imshow(L4);title(Prewitt);subplot(3,2,6);imshow(L5);title(Robe
15、rts);五、实验结果1、高斯图像的滤波处理分析:领域平均算法简单,可减小图像灰度的“尖锐”变化,减小噪声。但它在降低噪声的同时使图像产生模糊,特别在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。2、椒盐图像的滤波处理分析:它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。 对中值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。 3、图像的锐化处理分析:Prewitt和Sobel算子是计算数字梯度时最常用的算子。Pre
16、witt模板比Sobel模板简单,但Sobel模板能够有效抑制噪声。拉普拉斯对噪声敏感, 常产生双像素宽的边缘,无方向性。六、思考问题1采用均值滤波、中值滤波,对高斯噪声和椒盐噪声的抑制哪种比较有效? 答:均值滤波,可减小图像灰度的“尖锐”变化,减小噪声。但它在降低噪声的同时使图像产生模糊,特别在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。 中值滤波法,能有效削弱椒盐噪声,且比邻域、阈值平滑法更有效。它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。 2模板大小的不同,所处理效果有何不同?为什么?答:对中
17、值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。 实验三 图像的傅里叶变换和频域处理一、 实验目的 1. 熟悉图像空间域和频率域的关系,掌握快速傅里叶变换2. 掌握离散傅里叶变换的性质和应用二、 实验原理与方法图像既能在空间域处理,也能在频率域处理。把图像信息从空域变换到频域,可以更好地分析、加工和处理二维离散傅立叶正变换的表达式为逆变换为:二维离散傅立叶变换具有若干性质,如:线性性、平移性、可分离性、周期性、共轭对称性、旋转不变性等。可利用离散傅里叶变换,将信号从空间域变换到频率域,在频率域选择合适的
18、滤波器H(u,v)对图像的频谱成分进行处理,然后经逆傅立叶变换得到处理图像,实现图像处理结果。三、实验内容与步骤1产生一幅如图所示亮块图像f(x,y)(256256 大小、暗处=0,亮处=255),对其进行FFT:(1)同屏显示原图f 和FFT(f)的幅度谱图;(2)若令f1(x,y)=(-1)x+y f(x,y),重复以上过程,比较二者幅度谱的异同,简述理由;(3)若将f1(x,y)顺时针旋转45 度得到f2(x,y),试显示FFT(f2)的幅度谱,并与FFT(f2)的幅度谱进行比较。2. 对256256 大小、256 级灰度的数字图像test5进行频域的理想低通、高通滤波滤波,同屏显示原图
19、、幅度谱图和低通、高通滤波的结果图。四、实验代码1、黑白图像I=imread(D:Matlabworkimagines3_1.tif);figure(1);subplot(2,2,1);imshow(I);title(原始图像);F=double(I);g=fftshift(fft2(F);subplot(2,2,2);imshow(log(abs(g),),color(jet(64);title(傅里叶图像); J=imrotate(I,45,bilinear);subplot(2,2,3);imshow(J);title(顺时针旋转45);F2=double(I);g2=fftshift(
20、fft2(F2);subplot(2,2,4);imshow(log(abs(g2),),color(jet(64);title(傅里叶频谱);2、频域的理想低通、高通滤波滤波 I=imread(D:Matlabworkimaginestest5.gif);subplot(3,2,1);imshow(I);title(原始图像);f1,f2=freqspace(size(I),meshgrid);Hd=ones(size(I);r=sqrt(f1.2+f2.2); I=double(I);f=fft2(I);g=fftshift(f);subplot(3,2,2);imshow(log(abs(g),),color(jet(64);title(傅里叶变换); M,N=size(f);n1=floor(M/2);n2=floor(N/2);d0=50;for i=1:M for j=1:N d=sqrt(i-n1)2+(j-n2)2); if d=d0 h=1; else h=0; end g(i,j)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拼婚合股合同协议书模板
- 怎样写收购鸭子合同协议
- 最高额质押担保合同范本
- 收购废石膏服务合同范本
- 租赁商铺合同终止协议书
- 技术人才培养合同协议书
- 摊位出租或转让合同范本
- 教育培训资质借用协议书
- 智能设备研发合同协议书
- 木材供货协议合同书范本
- 以史为帆明方向+少年立志向未来+课件-2025-2026学年上学期主题班会
- 2025年医卫类病理学技术(中级)专业知识-专业实践能力参考题库含答案解析(5套试卷)
- 2025上海科技馆事业单位工作人员招聘10人笔试备考题库及答案解析
- 八年级语文上册期末考点专题17 新闻阅读(解析版)
- 监狱消防安全应急预案
- 军事类面试题目及答案
- 2025巡护员考试题库及答案
- 产科专科护士结业汇报
- (完整版)采购评审专家考试试题库(附完整答案)
- 河北广电频道管理办法
- 2025年中式烹调师(技师)考试题库附答案
评论
0/150
提交评论